Maintenance 4.0: Optimizing Asset Integrity and Reliability in Modern Manufacturing
- 1. Professor, Department of Mechanical Engineering, Faculty of Engineering, Shubra, Benha University, (Cairo), Egypt.
Description
Abstract: The reliability of critical assets is essential for operational success and long-term sustainability in modern manufacturing. Asset Integrity Management (AIM) ensures reliability, availability, maintainability, and safety (RAMS) while minimizing risks and costs. Industry 4.0 technologies—such as the Internet of Things (IoT), Artificial Intelligence (AI), and Big Data analytics—have revolutionized maintenance strategies, enabling real-time monitoring, predictive diagnostics, and data-driven decision-making. These advancements have transformed AIM, optimizing asset performance and operational efficiency. Maintenance 4.0 leverages these technologies to integrate predictive and preventive maintenance, enabling proactive repairs, reducing costly failures, and enhancing equipment reliability and productivity. This paper examines the impact of Maintenance 4.0 on AIM, focusing on the transition from reactive to intelligent, technology-driven maintenance solutions. It highlights the benefits of improved efficiency, optimized maintenance schedules, cost reduction, risk mitigation, and sustainability in the competitive manufacturing sector. Through a comprehensive literature review, this study identifies gaps in aligning traditional maintenance practices with emerging technologies and proposes a framework to address these challenges. By combining advanced digital technologies with established AIM principles, the research offers a strategic roadmap for optimizing asset integrity, achieving operational excellence, and fostering sustainable growth in modern manufacturing.
Files
B109812020225.pdf
Files
(525.4 kB)
Name | Size | Download all |
---|---|---|
md5:762b8e6627396566a5d4b138cc7b58e0
|
525.4 kB | Preview Download |
Additional details
Identifiers
- DOI
- 10.35940/ijies.B1098.12020225
- EISSN
- 2319-9598
Dates
- Accepted
-
2025-02-15Manuscript received on 20 January 2025 | First Revised Manuscript received on 27 January 2025 | Second Revised Manuscript received on 01 February 2025 | Manuscript Accepted on 15 February 2025 | Manuscript published on 28 February 2025.
References
- Gomaa, A.H., 2022. Enhancing maintenance management of critical equipment using digital twin. Comprehensive Research and Reviews in Engineering and Technology, (CRRET), 1(1), pp.45-55. https://crrjournals.com/crret/sites/default/files/CRRET-2022-0025.pdf
- James, A.T., Kumar, G., Khan, A.Q. and Asjad, M., 2023. Maintenance 4.0: implementation challenges and its analysis. International Journal of Quality & Reliability Management, 40(7), pp.1706-1728. DOI: https://doi.org/10.1108/IJQRM-04-2021-0097
- Cachada, A., Barbosa, J., Leitño, P., Gcraldcs, C.A., Deusdado, L., Costa, J., Teixeira, C., Teixeira, J., Moreira, A.H., Moreira, P.M. and Romero, L., 2018, September. Maintenance 4.0: Intelligent and predictive maintenance system architecture. In 2018 IEEE 23rd international conference on emerging technologies and factory automation (ETFA) (Vol. 1, pp. 139-146). IEEE. DOI: https://doi.org/10.1109/ETFA.2018.8502489
- Lee, S.M., Lee, D. and Kim, Y.S., 2019. The quality management ecosystem for predictive maintenance in the Industry 4.0 era. International Journal of Quality Innovation, 5(1), p.4. DOI: https://link.springer.com/article/10.1186/s40887-019-0029-5
- Câmara, R.A., Sâo Mamede, H. and dos Santos, V.D., 2019, October. Predictive industrial maintenance with a viable systems model and maintenance 4.0. In 2019 8th International Conference On Software Process Improvement (CIMPS) (pp. 1-8). IEEE. DOI: https://doi.org/10.1109/CIMPS49236.2019.9082435
- Keleko, A.T., Kamsu-Foguem, B., Ngouna, R.H. and Tongne, A., 2022. Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis. AI and Ethics, 2(4), pp.553-577. https://link.springer.com/article/10.1007/s43681-021-00132-6
- Murtaza, A.A., Saher, A., Zafar, M.H., Moosavi, S.K.R., Aftab, M.F. and Sanfilippo, F., 2024. Paradigm shift for predictive maintenance and condition monitoring from Industry 4.0 to Industry 5.0: A systematic review, challenges and case study. Results in Engineering, p.102935. https://www.sciencedirect.com/science/article/pii/S2590123024011903
- Ceruti, A., Marzocca, P., Liverani, A. and Bil, C., 2018. Maintenance in Aeronautics in an Industry 4.0 Context: the role of AR and AM. In Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0 (pp. 43-52). IOS Press. DOI: https://doi.org/10.3233/978-1- 61499-898-3-43
- Zhang, W., Yang, D. and Wang, H., 2019. Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE systems journal, 13(3), pp.2213-2227. DOI: https://doi.org/10.1109/JSYST.2019.2905565
- Çınar, Z.M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M. and Safaei, B., 2020. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), p.8211. https://www.mdpi.com/2071- 1050/12/19/8211
- Tsakalerou, M., Nurmaganbetov, D. and Beltenov, N., 2022. Aircraft Maintenance 4.0 in an era of disruptions. Procedia computer science, 200, pp.121-131. https://www.sciencedirect.com/science/article/pii/S1877050922002204
- Franciosi, C., Iung, B., Miranda, S. and Riemma, S., 2018. Maintenance for sustainability in the industry 4.0 context: A scoping literature review. IFAC-PapersOnLine, 51(11), pp.903-908. https://www.sciencedirect.com/science/article/pii/S2405896318315866
- Jasiulewicz-Kaczmarek, M. and Gola, A., 2019. Maintenance 4.0 technologies for sustainable manufacturing-an overview. IFACPapersOnLine, 52(10), pp.91-96. https://www.sciencedirect.com/science/article/pii/S2405896319308468 ?via%3Dihub
- Jasiulewicz-Kaczmarek, M., 2024. Maintenance 4.0 Technologies for Sustainable Manufacturing. Applied Sciences, 14(16), p.7360. DOI: https://doi.org/10.3390/app14167360
- Bousdekis, A., Apostolou, D. and Mentzas, G., 2019. Predictive maintenance in the 4th industrial revolution: Benefits, business opportunities, and managerial implications. IEEE engineering management review, 48(1), pp.57-62. DOI: https://doi.org/10.1109/EMR.2019.2958037
- Tortorella, G.L., Fogliatto, F.S., Cauchick-Miguel, P.A., Kurnia, S. and Jurburg, D., 2021. Integration of industry 4.0 technologies into total productive maintenance practices. International Journal of Production Economics, 240, p.108224. DOI: https://doi.org/10.1016/j.ijpe.2021.108224
- Pech, M., Vrchota, J. and Bednář, J., 2021. Predictive maintenance and intelligent sensors in smart factory. Sensors, 21(4), p.1470. DOI: https://doi.org/10.3390/s21041470
- Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., TobonValencia, E. and Eburdy, R., 2020. Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. International Journal of Production Research, 58(5), pp.1384-1400. DOI: https://doi.org/10.1080/00207543.2019.1636323
- Jasiulewicz-Kaczmarek, M., Antosz, K., Zhang, C. and Waszkowski, R., 2022. Assessing the barriers to industry 4.0 implementation from a maintenance management perspective-pilot study results. IFACPapersOnLine, 55(2), pp.223-228. https://www.sciencedirect.com/science/article/pii/S2405896322001987
- Dyba, W. and De Marchi, V., 2022. On the road to Industry 4.0 in manufacturing clusters: the role of business support organisations. Competitiveness Review: An International Business Journal, 32(5), pp.760-776. DOI: https://doi.org/10.1108/CR-09-2021- 0126
- Silvestri, L., Forcina, A., Introna, V., Santolamazza, A. and Cesarotti, V., 2020. Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Computers in industry, 123, p.103335. DOI: https://doi.org/10.1016/j.compind.2020.103335
- Metso, L. and Thenent, N.E., 2020. Characteristics of Maintenance 4.0 and their reflection in aircraft engine MRO. In Advances in Asset Management and Condition Monitoring: COMADEM 2019 (pp. 499- 509). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-57745-2_42
- Taş, Ü., 2024. Advancing predictive maintenance: a comprehensive case study through industry 4.0. International Journal of Automotive Engineering and Technologies, 13(3), pp.133-142. DOI: https://doi.org/10.18245/ijaet.1543509
- Giacotto, A., Costa Marques, H., Pereira Barreto, E.A. and Martinetti, A., 2021. The need for ecosystem 4.0 to support maintenance 4.0: An aviation assembly line case. Applied Sciences, 11(8), p.3333. DOI: https://doi.org/10.3390/app11083333
- Ghobakhloo, M., Iranmanesh, M., Vilkas, M., Grybauskas, A. and Amran, A., 2022. Drivers and barriers of industry 4.0 technology adoption among manufacturing SMEs: a systematic review and transformation roadmap. Journal of Manufacturing Technology Management, 33(6), pp.1029- 1058. DOI: https://doi.org/10.1108/JMTM-12-2021-0505
- Giliyana, S., Salonen, A. and Bengtsson, M., 2024. A Conceptual Implementation Process for Smart Maintenance Technologies. In Advances in Asset Management: Strategies, Technologies, and Industry Applications (pp. 61-84). Cham: Springer Nature Switzerland. https://link.springer.com/chapter/10.1007/978-3-031-52391-5_3
- Hlihel, F.B., Chater, Y. and Boumane, A., 2022, March. Maintenance 4.0 Employees' Competencies: Systematic Literature Review. In 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-14). IEEE. https://ieeexplore.ieee.org/abstract/document/9737840
- Werbińska-Wojciechowska, S. and Winiarska, K., 2023. Maintenance performance in the age of Industry 4.0: A bibliometric performance analysis and a systematic literature review. Sensors, 23(3), p.1409. DOI: https://doi.org/10.3390/s23031409
- Adu-Amankwa, K., Attia, A.K., Janardhanan, M.N. and Patel, I., 2019. A predictive maintenance cost model for CNC SMEs in the era of industry 4.0. The International Journal of Advanced Manufacturing Technology, 104, pp.3567-3587. https://link.springer.com/article/10.1007/s00170-019-04094-2
- Navas, M.A., Sancho, C. and Carpio, J., 2020. Disruptive maintenance engineering 4.0. International Journal of Quality & Reliability Management, 37(6/7), pp.853-871. DOI: https://doi.org/10.1108/IJQRM-09-2019-0304
- Zonta, T., Da Costa, C.A., da Rosa Righi, R., de Lima, M.J., da Trindade, E.S. and Li, G.P., 2020. Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, p.106889. DOI: https://doi.org/10.1016/j.cie.2020.106889
- Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J. and Barbosa, J., 2020. Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in Industry, 123, p.103298. DOI: https://doi.org/10.1016/j.compind.2020.103298
- Lee, J., Ni, J., Singh, J., Jiang, B., Azamfar, M. and Feng, J., 2020. Intelligent maintenance systems and predictive manufacturing. Journal of Manufacturing Science and Engineering, 142(11), p.110805. DOI: https://doi.org/10.1115/1.4047856
- Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A. and De Felice, F., 2020. Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability, 12(2), p.492. DOI: https://doi.org/10.3390/su12020492
- Nardo, M.D., Madonna, M., Addonizio, P. and Gallab, M., 2021. A mapping analysis of maintenance in Industry 4.0. Journal of applied research and technology, 19(6), pp.653-675. DOI: https://doi.org/10.22201/icat.24486736e.2021.19.6.1460
- Nordal, H. and El‐Thalji, I., 2021. Modeling a predictive maintenance management architecture to meet industry 4.0 requirements: A case study. Systems Engineering, 24(1), pp.34-50. DOI: https://doi.org/10.1002/sys.21565
- Jasiulewicz-Kaczmarek, M. and Antosz, K., 2022, June. Industry 4.0 technologies for maintenance management–an overview. In International Conference Innovation in Engineering (pp. 68-79). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-09382-1_7
- Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H. and Adda, M., 2022. On predictive maintenance in industry 4.0: Overview, models, and challenges. Applied Sciences, 12(16), p.8081. DOI: https://doi.org/10.3390/app12168081
- Pinciroli, L., Baraldi, P. and Zio, E., 2023. Maintenance optimization in industry 4.0. Reliability Engineering & System Safety, 234, p.109204. DOI: https://doi.org/10.1016/j.ress.2023.109204
- Rai, A., shastri, J. and Bansal, H., 2024. Artificial Intelligence Techniques in Predictive Maintenance, Their Applications, Challenges, and Prospects. Artificial Intelligence‐Enabled Digital Twin for Smart Manufacturing, pp.565-579. DOI: https://doi.org/10.1002/9781394303601.ch24
- Mabaso, M., Peach, R. and Pretorius, L., 2024, August. Determining Maintenance 4.0 Readiness: A Case Study of a South African Food Manufacturing Company. In 2024 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 1-10). IEEE. DOI: https://doi.org/10.23919/PICMET64035.2024.10653242
- Gomaa, A.H., 2024. Enhancing proactive maintenance of critical equipment by integrating digital twins and lean six sigma approaches. International Journal of Modern Studies in Mechanical Engineering (IJMSME) Volume 10, Issue 1, 2024, PP 20-35. https://www.researchgate.net/publication/386347178_Enhancing_Proa ctive_Maintenance_of_Critical_Equipment_by_Integrating_Digital_T wins_and_Lean_Six_Sigma_Approaches