Theoretical Investigation of Gravitational Effect on Effective Mass of Electromagnetic Wave
- 1. Department of Physics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu-44600, Nepal.
Description
Abstract: This paper proposes that the effective mass of an electromagnetic wave is not zero and further points out that an electromagnetic wave undergoes a frequency shift in a gravitational field only if its effective mass varies with gravity. Based on proposed model, mass of an electromagnetic wave of frequency 𝑓 is given by formula 𝑚 = 7.36x10−51𝑓. This new understanding can be helpful for the analysis of mass, linear momentum, force, frequency, wavelength and energy of electromagnetic waves inside the gravitational field namely at Schwarzschild radius, black hole and so on. A key point of this work is that the gravitational redshift effect can be explained more directly based on the variation of the proposed mass of the electromagnetic wave inside the gravitational field.
Files
A105605010425.pdf
Files
(504.7 kB)
Name | Size | Download all |
---|---|---|
md5:057f56dbf1a6a77506cab0db669a1be6
|
504.7 kB | Preview Download |
Additional details
Identifiers
- EISSN
- 2582-8983
- DOI
- 10.54105/ijap.A1056.04021024
Dates
- Accepted
-
2024-10-15Manuscript received on 07 July 2024 | Revised Manuscript received on 21 September 2024 | Manuscript Accepted on 15 October 2024 | Manuscript published on 30 October 2024.
References
- Einstein, A. (1916). The foundation of the general theory of relativity. Annalen der Physik (Vol. 49, Issue 7, pp. 769-822). DOI: https://doi.org/10.1002/andp.19163540702
- Earman J., & Glymour, C. (1980). The gravitational redshift as a test of general relativity: History and analysis. Studies in History and Philosophy of Science Part A (Vol.17, Issue.3, pp.175-214). DOI: https://doi.org/10.1016/0039-3681(80)90025-4
- Plebanski, J. (1960). Electromagnetic waves in gravitational fields. Physical Review (Vol.118, Issue.5, pp.1396-1408). DOI: https://link.aps.org/doi/10.1103/PhysRev.118.1396
- Pound, R.V., & Snider, J.L. (1965). Effect of the gravity on gamma radiation. Physical Review (Vol.140, Issue.3, pp.788-803). DOI: https://doi.org/10.1007/BF00670996
- Sadeh, I., Feng, L.L., & Lahav, O. (2015). Gravitation redshift of galaxies in cluster from the Sloan digital sky survey and the Baryon oscillation spectroscopic survey. Physical Review Letters (Vol.114, Issue.7, p.071103). DOI: https://link.aps.org/doi/10.1103/PhysRevLett.114.071103
- Wojtak, R., Hansen, S.H. & Hjorth, J. (2011). Gravitational redshift of galaxies in clusters as predicted by general relativity. Nature (vol.477, Issue.7366, pp.567-569). DOI: https://doi.org/10.1038/nature10445
- Muller, H., Peters, A. & Chu, S. (2010). A precision measurement of the gravitational redshift by the interference of matter waves. Nature (vol.463, Issue.7283, pp.926-929). DOI: https://doi.org/10.1038/nature08776
- Will, C.M. (2014). The confrontation between general relativity and experiment. Living Reviews in Relativity (Vol.17, Issue.4, pp.1-117). DOI: https://doi.org/10.12942/lrr-2014-4
- Scott, R.B. (2015). Teaching the gravitational redshift: lessons from the history and philosophy of physics. Journal of Physics: Conference Series. (Vol.600, Issue.1, p.012055). DOI: https://doi.org/10.1088/1742-6596/600/1/012055
- Chang, D.C. (2018). A quantum mechanical interpretation of gravitational redshift of electromagnetic wave. Optik (Vol.174, pp.636- 641). DOI: https://doi.org/10.1016/j.ijleo.2018.08.127
- Khadka, C.B. (2023). Determination of variation of mass with gravity. Journal of Nepal Physical Society (9, Issue.1, pp.129-136). DOI: https://doi.org/10.3126/jnphyssoc.v9i1.57750
- Khadka, C.B. (2022). Relative nature of electric permittivity and magnetic permeability of electromagnetic wave. Indian Journal of Advanced Physics (vol.2, Issue.1, pp.17-25). DOI: https://doi.org/10.54105/ijap.C1021.041322
- . Khadka, C.B. (2023). Biot-Savart law for determination of speed of particle beyond the speed of light. Indian Journal of Advanced Physics (vol.3, Issue.1, pp.1-5). DOI: https://doi.org/10.54105/ijap.A1035.043123
- Khadka, C.B. (2023). Extension of Maxwell's Equation for Determination of Relativistic Electric and Magnetic Field. International Journal of Basic Science and Applied Computing (Vol.10, Issue.1, pp.1- 90). DOI: https://doi.org/10.35940/ijbsac.B1044.0910123
- Khadka, C.B. (2022). Redefinition of De-Broglie wavelength associated with material particle. Indian Journal of Advanced Physics (Vol.2, Issue.1, pp.14-16). DOI: https://doi.org/10.54105/ijap.C1020.041322
- Khadka, C.B. (2023). Transformation of Special Relativity into Differential Equation by Means of Power Series Method. International Journal of Basic Sciences and Applied Computing (Vol.10, Issue.1, pp.10-15). DOI: https://doi.org/10.35940/ijbsac.B1045.0910123
- Khadka, C.B. (2023). An accurate theoretical formula for linear momentum, force and Kinetic energy. BIBECHANA (Vol.20, Issue.3, pp.259-266). DOI: https://doi.org/10.3126/bibechana.v20i3.55476
- Khadka, C.B. (2023). Derivation of the Lorentz transformation for determination of space contraction. St. Petersburg State Polytechnical University Journal. Physics and Mathematics (Vol.16, Issue.3, pp.115- 130). DOI: https://doi.org/10.18721/JPM.16310
- Khadka, C.B. (2024). Formulation of the Lorentz transformation equations in the three dimensions of space. St. Petersburg State Polytechnical University Journal. Physics and Mathematics (Vol. 17, Issue. 2, pp. 160-173). DOI: https://doi.org/10.18721/JPM.17213
- Khadka, C.B. (2024). Geometrical interpretation of space contraction in two-dimensional Lorentz transformation. BIBECHANA (Vol. 21, Issue. 2, pp. 103-112). DOI: https://doi.org/10.3126/bibechana.v21i2.62271
- Khadka, C.B. (2025). Geometrical interpretation of Lorentz transformation equations in two and three dimensions of space. Jordan Journal of Physics (Vol. 18, Issue. 2). https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_ Introductory_Physics_- _Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_ and_Woodman)/24%3A_The_Theory_of_Special_Relativity/24.06%3 A_Lorentz_transformations_and_space-time
- Szostek R. (2022). Explanation of what time in kinematics is and dispelling myths allegedly stemming from the Special Theory of Relativity. Applied Sciences (Vol.12, Issue.12, pp.1-19). https://www.mdpi.com/2076-3417/12/12/6272
- Szostek, K. & Szostek, R. (2018). Kinematics in the special theory of ether. Moscow University Physics Bulletin (Vol.73, Issue.4, pp. 413- 421). https://link.springer.com/article/10.3103/S0027134918040136
- Szostek, R. (2020). Derivation of all linear transformations that meet the results of Michelson-Morley's experiment and discussion of the relativity basics. Moscow University Physics Bulletin (Vol.75, Issue.6, 684-704). DOI: https://doi.org/10.3103/S0027134920060181
- Szostek K. & Szostek R. (2023). The concept of a mechanical system for measuring the one-way speed of light. Technical Transactions (No. 2023/003, e2023003, pp.1-9). DOI: https://doi.org/10.37705/TechTrans/e2023003
- Asari, A. R., Guo, Y., & Zhu, J. (2020). Magnetic Properties of Somaloy 700 (5P) Material Under Round Magnetic Flux Loci. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 3, pp. 2479–2483). DOI: https://doi.org/10.35940/ijitee.c9226.019320
- N., M., & R., S. (2020). Triple Diffusive Surface Tension Driven Convection in a Composite Layer in the Presence of Vertical Magnetic Field. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 3, pp. 1727–1734). DOI: https://doi.org/10.35940/ijeat.c5707.029320
- Sharma, R., Dewakar, S. K., & Gupta, B. K. (2020). A Hypothesis to develop Programmable Intelligence using Magnetic Fields generated by Human Mind. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 6, pp. 5738–5740). DOI: https://doi.org/10.35940/ijrte.f9959.038620