Published February 6, 2021 | Version v1
Dataset Open

Multi-aspect renewable energy forecasting

  • 1. ROR icon American University
  • 2. ROR icon University of Bari Aldo Moro
  • 3. ROR icon Halmstad University
  • 4. ROR icon Universidade Nova de Lisboa
  • 5. Universidade Autónoma de Lisboa

Description

TUCKER-CLUS: Multi-aspect renewable energy forecasting

A new method based on the Tucker tensor decomposition, capable of extracting a new feature space for the multi-plant energy forecasting task.

For evaluation purposes, we have investigated the performance of predictive clustering trees with the new feature space, compared to the original feature space, in three renewable energy datasets. The results are favorable for the proposed method, also when compared with state-of-the-art algorithms.

The performance of the method has been tested on the 24-hour ahead multi-plant energy forecasting task. Additional details can be found on the research paper referenced below.

 

Publications:

R. Corizzo, M. Ceci, H. Fanaee-T, J. Gama: Multi-aspect renewable energy forecasting, Information Sciences (DOI: 10.1016/j.ins.2020.08.003), https://www.sciencedirect.com/science/article/pii/S0020025520307611

Citation:

@article{corizzo2021multi,
  title={Multi-aspect renewable energy forecasting},
  author={Corizzo, Roberto and Ceci, Michelangelo and Fanaee-T, Hadi and Gama, Joao},
  journal={Information Sciences},
  volume={546},
  pages={701--722},
  year={2021},
  publisher={Elsevier}
}

Files

datasets.zip

Files (435.5 MB)

Name Size Download all
md5:edfc6f3149177cbeb686126bbfc0a18f
44.4 MB Preview Download
md5:70e41b96c9ab82d19a3dad5ebf165bb3
308.4 kB Preview Download
md5:213f53da91f0c44c407c5ce1a57a6d81
94.5 kB Preview Download
md5:3a8c0c4715e701ff4cccdff0034d74f8
1.7 kB Preview Download
md5:9307bf5bec1815e52a95a58b172f4975
7.1 kB Preview Download
md5:bbc2de07fb76b7183ae654e92b53c1e4
390.7 MB Preview Download

Additional details

References

  • Corizzo, R., Ceci, M., Fanaee-T, H., & Gama, J. (2021). Multi-aspect renewable energy forecasting. Information Sciences, 546, 701-722.