Published January 23, 2025 | Version v1
Dataset Open

geoSABINA: Species distribution models (SDMs): Shrub species (files U - Z)

  • 1. Universidad Autonoma de Madrid Facultad de Ciencias
  • 2. Centro de Investigación en Biodiversidad y Cambio Global CIBC-UAM

Description

This dataset provides information on the current and future potential distribution of shrubs in peninsular Spain, predicted using species distribution models (SDMs). For each species, the SDMs were projected under current (1990-2010) and four future (2071-2100) climate scenarios. Models were generated using the R package sabinaNSDM and an ensemble approach combining three statistical algorithms: generalized linear models, gradient boosted machine, and random forests. Model training utilized shrub species occurrence data alongside environmental variables from the geoSABINA dataset. This dataset includes both continuous suitability maps and binary presence-absence maps [derived from the suitability maps using thresholds based on True Skill Statistic (bin.TSS.tif files) and the Receiver Operating Characteristic curve (bin.ROC.tif)]. Additionally, uncertainty maps (EMcv.tif files) are provided. The full dataset comprises a total of  2,020 raster layers in TIFF format, with a spatial resolution of 1 km x1 km but is divided into two datasets, one for species whose name starts from A-T (95 species) - https://zenodo.org/records/14679933 , and another one for species with names from U-Z (6 species) -https://zenodo.org/records/14725791. Model thresholds and accuracy values are provided in the directory “values”. The detailed list of layers available is provided in data_table_sdms_shrubs.csv and includes information on the category, dataset, description, resolution, time period, and path,.

Raster information:

  • Resolution: 1 km
  • Extent: -75638.32, 1031361.68, 3976769.52, 4870769.52 (xmin, xmax, ymin, ymax)
  • CRS: WGS 84 / UTM Zone 30N (EPSG:32630)

References: The references in this list should be added to any publication using these data:

  • Goicolea, T., Morales-Barbero, J., García-Viñas, J.I, Gastón, A., Aroca-Fernández, M.J., Calleja, J.A., Moren, J.C. , Ramos-Gutiérrez, I., Rodríguez, M.A., Lima, H., Broennimann, O., Guisan, A, Adde, A., Pérez-Latorre, A.V., G. Mateo, R. (2025) Scientific Data.
  • Goicolea, T., Adde, A., Broennimann, O., García-Viñas, J.I., Gastón, A., Aroca-Fernández, M.J. et al. (2024). Spatially-Nested Hierarchical Species Distribution Models to Overcome Niche Truncation in National-Scale Studies. Ecography. https://doi.org/10.1111/ecog.07328

Files

data_table_sdms_shrubs.csv

Files (130.4 MB)

Name Size Download all
md5:5db5eae194385b4c6f68e5f7538f28ec
1.1 MB Preview Download
md5:1bf15f308d928bc7841ae6eb59080337
3.3 kB Preview Download
md5:4dd9e43ee8ddf23dff356740cc918582
21.9 MB Preview Download
md5:2c027179e71b5ca965dcb678f200b086
20.8 MB Preview Download
md5:4e147c7d0b443dcb9fc871db5edb5931
22.1 MB Preview Download
md5:963e35a0a67b01ef7f16d3f9accebe48
21.9 MB Preview Download
md5:be5a8b994315bdbcce72941bcad5831a
21.3 MB Preview Download
md5:468cf3515fd71c4aeb9885fe24f8f5a8
21.4 MB Preview Download