Planned intervention: On Wednesday June 26th 05:30 UTC Zenodo will be unavailable for 10-20 minutes to perform a storage cluster upgrade.
Published September 20, 2018 | Version 2.0.0
Dataset Open

Netherlands F3 Interpretation Dataset


Netherlands F3 Interpretation Dataset

Machine learning and, more specifically, deep learning algorithms have seen remarkable growth in their popularity and usefulness in the last years. Such a fact is arguably due to three main factors: powerful computers, new techniques to train deeper networks and more massive datasets. Although the first two are readily available in modern computers and ML libraries, the last one remains a challenge for many domains. It is a fact that big data is a reality in almost all fields today, and geosciences are not an exception. However, to achieve the success of general-purpose applications such as ImageNet - for which there are +14 million labeled images for 1000 target classes - we not only need more data, we need more high-quality labeled data. Such demand is even more difficult when it comes to the Oil & Gas industry, in which confidentiality and commercial interests often hinder the sharing of datasets to others. In this letter, we present the Netherlands interpretation dataset, a contribution to the development of machine learning in seismic interpretation. The Netherlands F3 dataset was acquired in the North Sea, offshore Netherlands. The data is publicly available and comprises pos-stack data, eight horizons and well logs of 4 wells. However, for the dataset to be of practical use for our tasks, we had to reinterpret the seismic, generating nine horizons separating different seismic facies intervals. The interpreted horizons were used to create 651 labeled masks for inlines and 951 for crosslines. We present the results of two experiments to demonstrate the utility of our dataset. 

Dataset contents

  • Crosslines:
    • Classes: 10
    • Number of slices: 651
    • Records per class: 9,440
    • Total of records: 94,400
  • Inlines:
    • Classes: 10
    • Number of slices: 951
    • Records per class: 9,720
      • Total of records: 94,720
  • Configuration:
    • Crop: [0, 0, 0, 0]
    • Gray levels: 256
    • Noise: 0.3
    • Percentile: 5.0
    • Strides: [20, 48]
    • Tile shape: [25, 64, 1]


Files (1.7 GB)

Name Size Download all
639.1 MB Preview Download
289.4 kB Preview Download
288.8 kB Preview Download
95.3 MB Download
637.2 MB Preview Download
4.8 MB Download
141.0 MB Download
139.6 MB Download