Published February 3, 2018 | Version Pre-print
Journal article Open

Interdigitated back contact silicon heterojunction solar cells featuring an interband tunnel junction enabling simplified processing

  • 1. CSEM, PV-Center
  • 2. Photovoltaics and Thin-Film Electronics Laboratory, IMT, EPFL
  • 3. Meyer Burger Research SA
  • 4. CSEM, PV-Center,

Description

This paper reports on the development of an innovative back-contacted crystalline silicon solar cell with passivating contacts featuring an interband tunnel junction at its electron-collecting contacts. In this novel architecture, named “tunnel-IBC”, both the hole collector patterning and its alignment to the electron collector are eliminated, thus drastically simplifying the process flow. However, two prerequisites have to be fulfilled for such devices to work efficiently, namely (i) lossless carrier transport through the tunnel junction and (ii) low lateral conductance within the hole collector in order to avoid shunts with the neighboring electron-collecting regions. We meet these two contrasting requirements by exploiting the anisotropic and substrate-dependent growth mechanism of n- and p-type hydrogenated nano-crystalline silicon layers. We investigate the influence of the deposition temperature and the doping gas concentration on the structural and the selectivity properties of these layers. Eventually, tunnel-IBC devices integrating hydrogenated nano-crystalline silicon layers have been processed and demonstrate up to 23.9 % conversion efficiency.

Files

paviet_SolarEnergy_2018_AsSubmitted.pdf

Files (1.5 MB)

Name Size Download all
md5:8b23f3a0145e5ffd3ffc81bb19a6a63f
1.5 MB Preview Download

Additional details

Funding

NextBase – Next-generation interdigitated back-contacted silicon heterojunction solar cells and modules by design and process innovations 727523
European Commission