Published January 15, 2025 | Version Version v1
Dataset Open

Data for "Alignment-induced self-organization of autonomously steering microswimmers: Turbulence, clusters, vortices, and jets"

  • 1. ROR icon Forschungszentrum Jülich
  • 2. ROR icon University of Cologne

Description

Introduction

This repository contains representative data and exemplary data-analysis codes supplementing the manuscript

Goh et al., Alignment-induced self-organization of autonomously steering microswimmers: Turbulence, clusters, vortices, and jets, Phys. Rev. Research 7, 013142 (2025),

which investigates the collective motion of autonomously aligning microswimmers by large-scale multiparticle collision dynamics (MPC) simulations.

 

Data 1. Pusher

Parameters

Péclet number ${\rm Pe} = 128$, maneuverability $\Omega=512$, system size $(L/a)^3=512^3$ collision cells, and number of squirmers $N_{\rm sq}=110,592$

Squirmer data

  • File name: pusher.squirmer.dat
  • 301 snapshots with a print interval of 2500 MPC steps
  • Data structure
    • Each row: a snapshot of the squirmers at a given MPC step
    • Column: $N_{\rm sq}$ state vectors (space-separated)
      • State vectors (12 components, space-separated): position (3D), velocity (3D), orientation (3D), angular velocity (3D)

Fluid data

  • File name: pusher.fluid.dat
  • A snapshot of fluid data at $300 \times 2500$ MPC step, $512 \times 512 \times 512$ cells
  • The velocity of each cell is averaged over 2500 MPC steps
  • Data structure
    • Column: cell position (3D), velocity (3D)

 

Data 2. Puller

Parameters

Péclet number ${\rm Pe} = 128$, maneuverability $\Omega=2048$, system size $(L/a)^3 = 768^3$ collision cells, and number of squirmers $N_{\rm sq}=373,248$

Squirmer data

  • File name: puller.squirmer.dat
  • 301 snapshots with a print interval of 2500 MPC steps
  • Data structure
    • Each row: a snapshot of the squirmers at a given MPC step
    • Column: $N_{\rm sq}$ state vectors (space-separated)
      • State vectors (12 components, space-separated): position (3D), velocity (3D), orientation (3D), angular velocity (3D)

Fluid data

  • File name: puller.fluid.dat
  • A snapshot of fluid data at $300 \times 2500$ MPC step, rescaled to $512 \times 512 \times 512$ cells
  • The velocity of each cell is averaged over 2500 MPC steps
  • Data structure
    • Column: cell position (3D), velocity (3D)

 

Exemplary script

Squirmer MSD

C code computing $(\Delta r)^2$ with an initial time of $200 \times 2500$ MPC step from the squirmer data files

  • File name: squirmer_MSD.c
  • Compile

gcc -o squirmer_MSD squirmer_MSD.c

  • Usage

./squirmer_MSD pusher.squirmer.dat 512 110592

  • Output

pusher.squirmer.dat.MSD

Fluid energy spectrum

Python script computing $E(k)$ from the fluid data files

  • File name: fluid_energy_spectrum.py
  • Usage (prerequisite: NumPy)

python fluid_energy_spectrum.py pusher.fluid.dat pusher.fluid.espec

 

Appendix. Meta-data

Units

  • Time: in units of $a\sqrt{m/(k_{\rm B}T)}$
  • Length: in units of the side length of a collision cell $a$
  • Energy: in units of $k_BT$

MPC fluid

  • Viscosity $\eta = 42.6\sqrt{mk_BT}/a^2$
Parameter Description Value
$\alpha$ collision angle $130^\circ$
$h$ collision time $0.02$
$\langle N_c \rangle$ MPC density (MPC particles per cell) $20$

Squirmer

  • Rotational diffusion coefficient $D_R = 0.000041\sqrt{k_BT/m}/a$
Parameter Description Value
$R_{\rm sq}$ squirmer radius $3$
$\epsilon_0$ LJ potential strength $5$
$v_0$ self-propulsion speed $0.031488$ (${\rm Pe}=128$)
$\beta$ active stress

$-3$ (pusher)

$3$ (puller)

$R_a$ sensing range

$12$

$C_0$ self-steering angular speed

$0.083968$ ($\Omega=2048$)

$0.335872$ ($\Omega=8192$)

Files

Files (31.1 GB)

Name Size Download all
md5:1fe28031ae104d3476f3aa633dbf82c9
2.0 kB Download
md5:72d9584396051d619f2bdd68a278dd76
7.0 GB Download
md5:468f0d948405c493c308f9a30224baf7
13.3 GB Download
md5:ac57b6aa5732f143ccb4e43824d9a146
7.0 GB Download
md5:1d99f9ac8754940b4134f0315d38cf5d
3.9 GB Download
md5:34006bf6fcf57754872ac1acd2a4d012
2.3 kB Download

Additional details

Funding

Gauss Centre for Supercomputing

Software

Repository URL
https://go.fzj.de/HTMPC
Programming language
C++ , Cuda
Development Status
Active