Global plant trait maps based on crowdsourced biodiversity monitoring and Earth observation - 1 km - All PFTs
Creators
Contributors
Data collectors:
-
Violle, Cyrille
-
Hending, Daniel
-
Hähn, Georg Johannes Albert
-
Tabeni, Solana9
-
PHARTYAL, Shyam10
-
Gonçalves, Fernando11
-
Kreft, Holger12
-
Schmidt, Marco13
-
Chen, Han14
-
Güler, Behlül
-
Dolezal, Jiri15, 16
-
Pielech, Remigiusz17
-
Guido, Anaclara18
-
Dwyer, Ciara19
-
Napoleone, Francesca20
-
Willie, Jacob21
-
de Gasper, André Luís22
-
Macia, Manuel J23, 24
-
Chytrý, Milan25
-
Lenoir, Jonathan
-
Thakur, Dinesh26
-
Dengler, Jürgen27
-
Świerszcz, Sebastian28, 29
-
Altman, Jan30, 6
-
Mucina, Ladislav
-
Nerlekar, Ashish31
-
Kakinuma, Kaoru32
-
RAWAT, PRAVIN33
-
Stančić, Zvjezdana34
-
Testolin, Riccardo35
-
Hatim, Mohamed36, 37
-
Rodrigues, Flávio
-
Homeier, Jürgen
-
Marques, Marcia38
-
McCarthy, James39
-
El-Sheikh, Mohamed40
Data curators:
Data manager:
-
1.
University of Freiburg
- 2. Max Planck Institute for Biogeochemistry
-
3.
German Centre for Integrative Biodiversity Research
-
4.
Martin Luther University Halle-Wittenberg
- 5. Alma Mater Studiorum - University of Bologna
-
6.
Czech University of Life Sciences Prague
- 7. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
- 8. Universitat de Valencia
-
9.
Consejo Nacional de Investigaciones Científicas y Técnicas
-
10.
Nalanda University
-
11.
University of Zurich
- 12. University of Göttingen
- 13. Palmengarten und Botanischer Garten
-
14.
Lakehead University
-
15.
Czech Academy of Sciences
-
16.
University of South Bohemia in České Budějovice
-
17.
Jagiellonian University
-
18.
Universidad de la República
-
19.
Lund University
-
20.
Sapienza University of Rome
- 21. Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerpen, Belgium
-
22.
Universidade Regional de Blumenau
- 23. Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM)
- 24. Universidad Autónoma de Madrid
-
25.
Masaryk University
-
26.
Czech Academy of Sciences, Institute of Botany
- 27. Zurich University of Applied Sciences (ZHAW)
-
28.
Wroclaw University of Environmental and Life Sciences
- 29. Polish Academy of Sciences
- 30. Institute of Botany of the CAS, v. v. i.
-
31.
Texas A&M University
-
32.
King Abdullah University of Science and Technology
- 33. Himalayan Forest Research Institute
- 34. Faculty of Geotechnical Engineering, University of Zagreb
-
35.
University of Bologna
- 36. Wageningen University & Research
- 37. Faculty of Science, Tanta University
-
38.
Universidade Federal do Paraná
- 39. Manaaki Whenua - Landcare Research
-
40.
King Saud University
Description
This dataset consists of 31 plant functional trait maps at 1 km resolution with global extent. Plant functional traits are predicted as community-weighted means based on a synthesis of crowdsourced biodiversity data (GBIF species observations, sPlot vegetation surveys, and in situ trait measurements from the TRY trait database) modeled as a function of Earth observation data, including surface reflectance, climatic variables, soil properties, canopy height, and vegetation optical depth.
This version of the maps includes traits sourced from all available plant functional types (PFT). PFT-specific maps are in progress and will be available in the future.
Note: In addition to using the coefficient of variation and area of applicability layers of the maps, we encourage all who wish to use these maps to take particular note of the model performance for the traits of interest, which can be found both in the raster metadata as well as in Table A.1. of the manuscript. The model performance varies significantly across the traits, and so care should be used.
GeoTIFF multilayer raster description
Each GeoTIFF is in Equal Area Scalable Earth projection (EPSG:6933). In addition to the trait predictions, two quality bands are provided. Model performance metrics are also included in the raster metadata.
Band number | Band name | Description |
1 | <trait name> | The predicted CWM trait values. |
2 | Coefficient of variation | An indicator of model uncertainty derived by comparing the predictions made during model cross-validation. |
3 | Area of applicability | An indicator of model reliability. The area of applicability indicates regions where predictor data used for prediction differs significantly from predictor values seen during model training (see Meyer and Pebesma, 2021). |
Trait table
Trait | TRY trait name | TRY ID | Unit |
---|---|---|---|
Conduit element length | Wood vessel element length; stem conduit (vessel and tracheids) element length | 282 | µm |
Dispersal unit length | Dispersal unit length | 237 | mm |
LDMC | Leaf dry mass per leaf fresh mass (leaf dry matter content, LDMC) | 47 | g g-1 |
Leaf area | Leaf area (in case of compound leaves: leaflet, undefined if petiole is in- or excluded) | 3113 | mm2 |
Leaf C | Leaf carbon (C) content per leaf dry mass | 13 | mg g-1 |
Leaf C/N ratio | Leaf carbon/nitrogen (C/N) ratio | 146 | g g-1 |
Leaf delta 15N | Leaf nitrogen (N) isotope signature (delta 15N) | 78 | ppm |
Leaf dry mass | Leaf dry mass (single leaf) | 55 | g |
Leaf fresh mass | Leaf fresh mass | 163 | g |
Leaf length | Leaf length | 144 | mm |
Leaf N (area) | Leaf nitrogen (N) content per leaf area | 50 | g m-2 |
Leaf N (mass) | Leaf nitrogen (N) content per leaf dry mass | 14 | mg g-1 |
Leaf P | Leaf phosphorus (P) content per leaf dry mass | 15 | mg g-1 |
Leaf thickness | Leaf thickness | 46 | mm |
Leaf water content | Leaf water content per leaf dry mass (not saturated) | 3120 | g g-1 |
Leaf width | Leaf width | 145 | mm |
Plant height | Plant height (vegetative) | 3106 | m |
Rooting depth | Root rooting depth | 6 | m |
Seed germination rate | Seed germination rate (germination efficiency) | 95 | days |
Seed length | Seed length | 27 | mm |
Seed mass | Seed dry mass | 26 | mg |
Seed number | Seed number per reproduction unit | 138 | - |
SLA | Leaf area per leaf dry mass (specific leaf area, SLA or 1/LMA): undefined if petiole is in- or excluded) | 3117 | m2 kg-1 |
SRL | Root length per root dry mass (specific root length, SRL) | 1080 | cm g-1 |
SRL (fine) | Fine root length per fine root dry mass (specific fine root length, SRL) | 614 | cm g-1 |
SSD | Stem specific density (SSD) or wood density (stem dry mass per stem fresh volume) | 4 | g cm-3 |
Stem conduit density | Stem conduit density (vessels and tracheids) | 169 | mm-2 |
Stem conduit diameter | Stem conduit diameter (vessels, tracheids) | 281 | µm |
Stem diameter | Stem diameter | 21 | m |
Wood fiber lengths | Wood fiber lengths | 289 | µm |
Wood ray density | Wood rays per millimetre (wood ray density) | 297 | mm-1 |
Crowsourced biodiversity data:
- https://uni-freiburg.de/enr-geosense/research/panops/
- https://gepris-extern.dfg.de/gepris/projekt/504978936?language=en
Files
X1080_mean_Shrub_Tree_Grass_1km.tif
Files
(20.3 GB)
Name | Size | Download all |
---|---|---|
md5:98cca8649c0ab8ec2795005634cc45d9
|
648.5 MB | Preview Download |
md5:bdb46cb750d9ac6e08ccc2450d0116ec
|
522.5 MB | Preview Download |
md5:76501b7fb829f3bd0976f20042f8956d
|
709.1 MB | Preview Download |
md5:32d73f40c6b522da8106f3f057165d02
|
632.5 MB | Preview Download |
md5:2f24a948cf532f822be92dba690ee111
|
698.1 MB | Preview Download |
md5:e11f24faee8ee08c7e6019e59b4cfc23
|
681.4 MB | Preview Download |
md5:8f41e57ce661fc0ac57fcd13f19d5155
|
701.9 MB | Preview Download |
md5:810bb532e1f3581a05889e769746d6b4
|
692.9 MB | Preview Download |
md5:7a8eddf14ccbc7ed48f8659500e081b8
|
688.8 MB | Preview Download |
md5:930eae5614d40acf252233e2f78bab4f
|
592.6 MB | Preview Download |
md5:96a843206fd2c51df07b275b7e6879cd
|
688.0 MB | Preview Download |
md5:48dafd56c747c537acd4ba1ea1718d81
|
693.8 MB | Preview Download |
md5:295220ec967c096efb870dc3bc69dd7c
|
419.4 MB | Preview Download |
md5:b8a7ed3fadb2422e65aa6dbe6d35d25e
|
681.1 MB | Preview Download |
md5:a09b618154b9aa96c36374932919d185
|
685.3 MB | Preview Download |
md5:614fa0b211d9a53d4b1c15b34431d2df
|
678.7 MB | Preview Download |
md5:058e7bf42fc945a963401d18a6185e15
|
675.3 MB | Preview Download |
md5:a4de82f9e1a609d1797d43c2537f413b
|
696.5 MB | Preview Download |
md5:fdcae4be1cc7858d8e22e1a5f497a4d0
|
451.7 MB | Preview Download |
md5:55d8ec47c10bf4c8bbf454eea4358c46
|
668.8 MB | Preview Download |
md5:352097902bd9f3291d275936b361676f
|
697.9 MB | Preview Download |
md5:9e3a1ac69092c8874217fb803699d192
|
701.0 MB | Preview Download |
md5:4406b57d59c948315b054a0b6649f39a
|
631.6 MB | Preview Download |
md5:d63d2fc05e01d3420350efd7f1f22b2a
|
713.3 MB | Preview Download |
md5:1725e9ef1c850d2e6d378484b7ae9743
|
702.8 MB | Preview Download |
md5:a4d8aef43617e973ecb6507864bc7e12
|
682.3 MB | Preview Download |
md5:d03945e41d9eb42a487a78509a9bd325
|
635.5 MB | Preview Download |
md5:2cdcb2264b73db4e0f382745048bd9c3
|
687.8 MB | Preview Download |
md5:6e2e4c3e76f0ac2f279e9309a9d89760
|
538.7 MB | Preview Download |
md5:ca592eb6b9f2f17063416449d117625e
|
698.9 MB | Preview Download |
md5:f43e5215bdaa2e81fb3d75f46febd0c8
|
682.8 MB | Preview Download |
Additional details
Funding
Dates
- Created
-
2025-03-10