Published July 7, 2025 | Version V2.1
Dataset Open

CHM_PRE V2: An upgraded high-precision gridded precipitation dataset for the Chinese mainland considering spatial autocorrelation and covariates

  • 1. ROR icon Beijing Normal University

Description

Important Notice: This version, CHM_PRE V2.1, extends the data coverage to 2024 and incorporates adjusted precipitation values for the southern foothills of the Himalayas. We recommend all users to use this version.

1. Description

Dataset name: CHM_PRE V2

Summary: The CHM_PRE V2 dataset is a new high-precision, long-term, daily gridded precipitation dataset for Chinese mainland. The long-term daily observation from 3,476 gauges and incorporated 11 related precipitation variables were utilized to characterize the correlations of precipitation. Then, the dataset was developed by employing an improved inverse distance weighting method combined with the machine learning-based light gradient boosting machine (LGBM) algorithm. CHM_PRE V2 demonstrates strong spatiotemporal consistency with existing gridded precipitation datasets, including CHM_PRE V1, GSMaP, IMERG, PERSIANN-CDR, and GLDAS. Validation against 63,397 high-density gauges confirms its high accuracy in both precipitation values and events. The dataset achieves a mean absolute error of 1.48 mm/day and a Kling-Gupta efficiency coefficient of 0.88. In terms of event detection capability, CHM_PRE V2 achieves a Heidke skill score of 0.68 and a false alarm ratio of 0.24. Overall, CHM_PRE V2 significantly enhances precipitation measurement accuracy and reduces the overestimation of precipitation events, providing a reliable foundation for hydrological modeling and climate assessments. The CHM_PRE V2 dataset provides daily precipitation data with a resolution of 0.1°, covering the entire Chinese mainland (18°N–54°N, 72°E–136°E). This dataset covers the period of 1960–2024, and will be continuously updated annually. The daily precipitation data is provided in NetCDF format, and for the convenience of users, we also offer annual and monthly total precipitation data in both NetCDF and GeoTIFF formats.

Latest version: Version 2.1 (July 02, 2025)

2. Content of the dataset

This dataset comprises the following four types of data:

(1) Metadata for CHM_PRE V2: This document provides detailed information about the dataset.

(2) CHM_PRE_V2_daily_{YEAR}.nc: Daily precipitation data in NetCDF format, organized into one file per year.

(3) CHM_PRE_V2_annual.nc and CHM_PRE_V2_annual.tif: Annual total precipitation data available in NetCDF and GeoTIFF formats.

(4) CHM_PRE_V2_monthly.nc and CHM_PRE_V2_monthly.tif: Monthly total precipitation data available in NetCDF and GeoTIFF formats.

3. Details of the variables in the file

Each NetCDF file contains the following four variables:

(1) lat: Latitude dimension, measured in degrees (°).

(2) lon: Longitude dimension, measured in degrees (°).

(3) time: Time dimension, measured in days since January 1, 1960.

(4) prec: Precipitation variable with dimensions (time, lat, lon). The unit of this variable is mm/day for daily values, mm/month for monthly values, and mm/year for annual values. Missing values are represented as NaN.

All GeoTIFF files use the WGS84 projection, with missing values set to -9999. In annual precipitation GeoTIFF files, each band represents the total precipitation for a specific year. The bands are organized sequentially, with the first band corresponding to the total precipitation for 1960, the second for 1961, and so on. The structure for monthly precipitation files is similar to that of annual files.

4. Resolution and Data Range

Resolution: 0.1°.

Time frame: January 1, 1960, to December 31, 2024 (with annual updates to follow).

Space scope: 18°N–54°N, 72°E–136°E (as detailed in the table below).

 

North:54°N

 

West:72°E

 

East:136°E

 

South:18°N

 

5. Examples of utilization

This dataset can be used using various approaches that support NetCDF and GeoTIFF formats. Below is an example of how to read this dataset using the Python programming language:

import xarray as xr

import rioxarray

import dask

from pathlib import Path

 

# Open a single NetCDF file

path_nc_monthly = 'CHM_PRE_V2_monthly.nc'

ds_monthly = xr.open_dataset(path_nc_monthly)

 

# Open a single GeoTIFF file

path_tiff_annual = 'CHM_PRE_V2_annual.tif'

ds_annual = xr.open_dataset(path_tiff_annual)

 

# Open multiple NetCDF files as one dataset

dir_nc_daily = Path('daily')

list_path_nc_daily = dir_nc_daily.glob('CHM_PRE_V2_daily_*.nc'# Get paths of all daily value files

ds_daily = xr.open_mfdataset(

    list_path_nc_daily# Pass the list of file paths

    chunks='auto'  # Set chunk size to enable dask chunking, which reduces memory usage and allows processing of very large NetCDF files on personal computers

)

6. References

1. Hu, J., Miao, C., Su, J., Zhang, Q., Gou, J., & Sun, Q. (2025). An upgraded high-precision gridded precipitation dataset for the Chinese mainland considering spatial autocorrelation and covariates. Earth System Science Data, 17(8), 3987–4004. https://doi.org/10.5194/essd-17-3987-2025

2. Zhang, Q., Miao, C., Su, J., Gou, J., Hu, J., Zhao, X., & Xu, Y. (2025). A new high-resolution multi-drought-index dataset for mainland China. Earth System Science Data, 17(3), 837–853. https://doi.org/10.5194/essd-17-837-2025

3. Han, J., Miao, C., Gou, J., Zheng, H., Zhang, Q., & Guo, X. (2023). A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations. Earth System Science Data, 15(7), 3147–3161. https://doi.org/10.5194/essd-15-3147-2023

7. Authors and contacts

Jinlong Hu (hujl98@mail.bnu.edu.cn)

Chiyuan Miao (miaocy@bnu.edu.cn)

Files

CHM_PRE_V2_annual.tif

Files (46.1 GB)

Name Size Download all
md5:ddebcf9a73068c3b11a51905c6f79741
119.8 MB Download
md5:fb6361fb125060ac5499d9eac85384c7
62.7 MB Preview Download
md5:c4f28f289a4120b644ce6e7b49db5d50
674.6 MB Download
md5:88fb866ce34837d8c1c936c459cf4e48
672.8 MB Download
md5:971230ee00a4f10eb5505d93c5009487
672.8 MB Download
md5:6b91dab570be4cd36868b9c9f06b8b4c
672.8 MB Download
md5:7ad986471f7981b4717b5144f7fbd9ce
674.6 MB Download
md5:70edb180050b75dde1d2930f34a85737
672.8 MB Download
md5:d5fe0087a46a32368b46c012041e61da
672.8 MB Download
md5:00e2dd59e1d1d8e184f7bd2589bc4ba3
672.8 MB Download
md5:af5ca4f13cf3517760640015bab77c3f
674.6 MB Download
md5:0cda655dc87fca6eb5ad4f179ec49e30
672.8 MB Download
md5:84953042be13af2ceab62a3ed2c39620
672.8 MB Download
md5:bc13db560ed6ab82081acd5baebcf234
672.8 MB Download
md5:21d09c8fb6e93977cb4ac4fa9a0ba3f0
674.6 MB Download
md5:ac16f1d3bbfb997e950247c712df6d9f
672.8 MB Download
md5:c5d40de252aad5d30bc2e18e05bd644d
672.8 MB Download
md5:3e01f8c80c9da948cc310ed9f67d26b9
672.8 MB Download
md5:b4baf2026266e871926b633fd6efe594
674.6 MB Download
md5:ac316ac278299e2da5b738513ac75aac
672.8 MB Download
md5:c9db95bdbf73fcf87bb73b1f1780d2ce
672.8 MB Download
md5:b3ecfba4933b441195a05e55b462526b
672.8 MB Download
md5:eea7e5886b6b0368b641c0a5e8ebd120
674.6 MB Download
md5:563bf3e92f5b6097dff9d04c649902f6
672.8 MB Download
md5:0468a7caca20d55dc377797bcd3e02d4
672.8 MB Download
md5:e5aa82fa4df69f28660aa4b1f409c804
672.8 MB Download
md5:59c8f2ddda7c51e0c9bde8db7a5a5151
674.6 MB Download
md5:8a26aa1cdb768a6e233f036743e286f9
672.8 MB Download
md5:ba995d439a6d70ce2ce56eb957a139c9
672.8 MB Download
md5:fc7e4f03bf97fb7abeed4428abcab99d
672.8 MB Download
md5:f8fa27ed5a093963ebc3991edb18326a
674.6 MB Download
md5:60376029be05c12e08295dae6aa88a8a
672.8 MB Download
md5:c2cc45e8c6985b08698835c0fff93a72
672.8 MB Download
md5:9eef64d4eb8335c81d095edb7653a78d
672.8 MB Download
md5:ff79e8f35d5c2d526c23e2b794dfa753
674.6 MB Download
md5:ef9cdd796bdd4272c564af83d143c4f4
672.8 MB Download
md5:78fe18b657572d5d57c669ad39ff930d
672.8 MB Download
md5:ee3a1826544a53cfa22c9e27d3342c22
672.8 MB Download
md5:21d417d9c7c91fb254f8b71688a3cfda
674.6 MB Download
md5:c876399762eb06de455a5f064db53e59
672.8 MB Download
md5:60744667d18e688424e3c84d6a26341e
672.8 MB Download
md5:68d29a1b2e25da927475e3d5a11f1f08
672.8 MB Download
md5:7eec34723484a3d18c7b260a9fe2119d
674.6 MB Download
md5:2ec2a8d7f6ad932723a140d46daaf1fb
672.8 MB Download
md5:ed0e72eb77b5e0ae013641340411f40d
672.8 MB Download
md5:6064a8401c1cd6cd424eabc9bc47c56f
672.8 MB Download
md5:d6d96deeb751729bc90b48681a3332cc
674.6 MB Download
md5:d6bfebe6d6ede0a3277658d0216c8d1c
672.8 MB Download
md5:b4b37ecbb5a6e0706c2f48e037c19940
672.8 MB Download
md5:03dfdb06cd2968bea9c92d115ae3b984
672.8 MB Download
md5:142d3d70e2cc81660fb4b067c2294d79
674.6 MB Download
md5:d91ed0c5aab7991b65553a93c24615eb
672.8 MB Download
md5:253f9e58c88b29032898c8dd75fc1ad8
672.8 MB Download
md5:88af67abb2bf4258a1cdb68bbd3cf702
672.8 MB Download
md5:892583f2f63cffc6c0c8f5fdbb78b492
674.6 MB Download
md5:7f7948341bccab6528e761560d3d2a79
672.8 MB Download
md5:e78e375525ab30b6e245b334b276b1d6
672.8 MB Download
md5:21d9985db23271298671a181d7e9ac1d
672.8 MB Download
md5:571038e91f9409de9b2bbf60f0f05823
674.6 MB Download
md5:d38dcaabb6f4b1c377c7ce2887bee953
672.8 MB Download
md5:fbd58c405ddb169e6698b510378fbe0c
672.8 MB Download
md5:997cb4a89e50831c1c8cb78b2a7a9510
672.8 MB Download
md5:6b255fb9cbd5ef84b71990e892128b0d
674.6 MB Download
md5:85828a3716756de719acc8e7d4df6d37
672.8 MB Download
md5:a52c259daaa50e7e5475518a9e8c5f7f
672.8 MB Download
md5:5651592183215046abb9ed97665b16c3
672.8 MB Download
md5:1b5e73a7ab163878afc3b849184ae91b
674.6 MB Download
md5:13aa9dde8714d11a0f8984a669608920
1.4 GB Download
md5:dbcaf24bf2007798fed5e88c3fb4aba1
723.9 MB Preview Download

Additional details

Related works

Is described by
Data paper: 10.5194/essd-17-3987-2025 (DOI)

Dates

Updated
2025-07-02
Update 2024 data and adjust precipitation data on the edge of the Qinghai-Tibet Plateau

References

  • Hu, J., Miao, C., Su, J., Zhang, Q., Gou, J., & Sun, Q. (2025). An upgraded high-precision gridded precipitation dataset for the Chinese mainland considering spatial autocorrelation and covariates. Earth System Science Data, 17(8), 3987–4004. https://doi.org/10.5194/essd-17-3987-2025
  • Zhang, Q., Miao, C., Su, J., Gou, J., Hu, J., Zhao, X., & Xu, Y. (2025). A new high-resolution multi-drought-index dataset for mainland China. Earth System Science Data, 17(3), 837–853. https://doi.org/10.5194/essd-17-837-2025
  • Han, J., Miao, C., Gou, J., Zheng, H., Zhang, Q., & Guo, X. (2023). A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations. Earth System Science Data, 15(7), 3147–3161. https://doi.org/10.5194/essd-15-3147-2023