The Substellar Transition Zone: A Stretched Temperature Canyon in Brown Dwarf Population due to Unsteady Hydrogen Fusion
Creators
- 1. GEPI, Observatoire de Paris, PSL Universit{\'e}, CNRS, 5 Place Jules Janssen, 92190 Meudon, France
Contributors
Editor:
Description
I introduce an L subdwarf classification scheme, which classified L subdwarfs into three metal subclasses. I would also like to draw your attention to transitional brown dwarfs which have unsteady hydrogen fusion in their cores to replenish the dissipation of their initial thermal energy. The temperature distribution of transitional brown dwarfs are stretched to a wide range and formed a substellar transition zone. The transition zone is most significant in the old halo population and range from 1000 K to 2200-3000 K depending on metallicity. The transition zone have impacts on our observational properties of field brown dwarf population. Because field L dwarfs are composed of very low-mass stars, transition brown dwarfs, and relative younger electric-degenerate brown dwarfs.
Files
      
        zenghua_zhang_cs20.pdf
        
      
    
    
      
        Files
         (854.1 kB)
        
      
    
    | Name | Size | Download all | 
|---|---|---|
| md5:7c09ffbc7181eefdbb4bce5d39a5e44c | 854.1 kB | Preview Download | 
Additional details
Identifiers
- arXiv
- arXiv:1810.07071
Related works
- References
- 10.1093/mnras/stw2438 (DOI)
- 10.1093/mnras/stx350 (DOI)
- 10.1093/mnras/sty1352 (DOI)
- 10.1093/mnras/sty2054 (DOI)
            
              References
            
          
        - Allard, F. 2014, In Exploring the Formation and Evolution of Planetary Systems, edited by M. Booth, B. C. Matthews, & J. R. Graham, IAU Symposium, vol. 299, pp. 271–272.
- Allard, F. & Hauschildt, P. H. 1995, ApJ, 445, 433.
- Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1997, A&A, 327, 1054.
- Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, A&A, 402, 701.
- Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42.
- Burgasser, A. J. 2004, ApJL, 614, L73.
- Burgasser, A. J. 2007, ApJ, 659, 655.
- Burgasser, A. J., Cruz, K. L., Cushing, M., Gelino, C. R., Looper, D. L., et al. 2010, ApJ, 710, 1142.
- Burgasser, A. J., Cruz, K. L., & Kirkpatrick, J. D. 2007, ApJ, 657, 494.
- Burrows, A., Hubbard, W. B., Lunine, J. I., & Liebert, J. 2001, Reviews of Modern Physics, 73, 719.
- Burrows, A., Marley, M., Hubbard, W. B., Lunine, J. I., Guillot, T., et al. 1997, ApJ, 491, 856.
- Burrows, A., Sudarsky, D., Sharp, C., Marley, M. S., Hubbard, W. B., et al. 1998, In Brown Dwarfs and Extrasolar Planets, edited by R. Rebolo, E. L. Martin, & M. R. Zapatero Osorio, Astronomical Society of the Pacific Conference Series, vol. 134, p. 354.
- Chabrier, G. & Baraffe, I. 1997, A&A, 327, 1039.
- Dupuy, T. J. & Liu, M. C. 2017, ApJS, 231, 15.
- Hayashi, C. & Nakano, T. 1963, Progress of Theoretical Physics, 30, 460.
- Kirkpatrick, J. D. 2005, ARA&A, 43, 195.
- Kirkpatrick, J. D., Looper, D. L., Burgasser, A. J., Schurr, S. D., Cutri, R. M., et al. 2010, ApJS, 190, 100.
- Kumar, S. S. 1963, ApJ, 137, 1121.
- Lazorenko, P. F. & Sahlmann, J. 2018, ArXiv e-prints.
- Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., Golimowski, D. A., Matthews, K., et al. 1995, Nature, 378, 463.
- Rebolo, R., Zapatero Osorio, M. R., & Martín, E. L. 1995, Na- ture, 377, 129.
- Zhang, Z. H., Gálvez-Ortiz, M. C., Pinfield, D. J., Burgasser, A. J., Lodieu, N., et al. 2018a, MNRAS.
- Zhang, Z. H., Homeier, D., Pinfield, D. J., Lodieu, N., Jones, H. R. A., et al. 2017a, MNRAS, 468, 261.
- Zhang, Z. H., Pinfield, D. J., Gálvez-Ortiz, M. C., Burningham, B., Lodieu, N., et al. 2017b, MNRAS, 464, 3040.
- Zhang, Z. H., Pinfield, D. J., Gálvez-Ortiz, M. C., Homeier, D., Burgasser, A. J., et al. 2018b, MNRAS, 479, 1383.