Published January 6, 2025 | Version v1
Dataset Open

geoSABINA: Species distribution models (SDMs): Tree species

  • 1. Universidad Autonoma de Madrid Facultad de Ciencias
  • 2. Centro de Investigación en Biodiversidad y Cambio Global CIBC-UAM

Description

This dataset provides information on the current and future potential distribution of trees in peninsular Spain, predicted using species distribution models (SDMs). For each species, the SDMs were projected under current (1990-2010) and four future (2071-2100) climate scenarios. Models were generated with the R package sabinaNSDM using a spatially-nested hierarchical (NSDM) and ensemble approach combining two scales (global and regional) and three statistical algorithms: generalized linear models, gradient boosted machine, and random forests. Model training utilized tree species occurrence data alongside environmental variables from the geoSABINA dataset. The SDMs employed two spatially-nested hierarchical modeling (NSDM) strategies: the covariate strategy and multiply strategy. This dataset includes both continuous suitability maps and binary presence-absence maps [derived from the suitability maps using thresholds based on True Skill Statistic (bin.TSS.tif files) and the Receiver Operating Characteristic (bin.ROC.tif) curve]. Additionally, uncertainty maps  (EMcv.tif files) are provided. This dataset comprises a total of 2,835 raster layers in TIFF format, with a spatial resolution of 250 x 250 meter. Model thresholds and accuracy values are provided in the directory “values”. A detailed list of available layers is provided in data_table_sdms_trees.csv, which includes information on the category, dataset, description, resolution, time period, and path.

 

Raster information

  • Resolution: 250 m
  • Extent: -75888.32, 1031611.68, 3977269.52, 4870519.52 (xmin, xmax, ymin, ymax)
  • CRS: WGS 84 / UTM Zone 30N (EPSG:32630)

References: The references in this list should be added to any publication using these data:

  • Goicolea, T., Morales-Barbero, J., García-Viñas, J.I, Gastón, A., Aroca-Fernández, M.J., Calleja, J.A., Moren, J.C. , Ramos-Gutiérrez, I., Rodríguez, M.A., Lima, H., Broennimann, O., Guisan, A, Adde, A., Pérez-Latorre, A.V., G. Mateo, R. (2025) Scientific Data.
  • Goicolea, T., Adde, A., Broennimann, O., García-Viñas, J.I., Gastón, A., Aroca-Fernández, M.J. et al. (2024). Spatially-Nested Hierarchical Species Distribution Models to Overcome Niche Truncation in National-Scale Studies. Ecography. https://doi.org/10.1111/ecog.07328

Files

Abies.alba.zip

Files (39.1 GB)

Name Size Download all
md5:b526ed0d3397012397b4fbfb255aae74
449.4 MB Preview Download
md5:cd1ae6d9df472812fc732a57cb17b854
491.9 MB Preview Download
md5:951ad1bac94a6b070546ab146d149880
491.0 MB Preview Download
md5:e62a7415b0b16c30d1917a7edc8c8dc9
516.5 MB Preview Download
md5:c11fb48f998f56a6c5379d67147c899a
495.0 MB Preview Download
md5:b6743eef0dafc4b5370888aba3a852f6
504.7 MB Preview Download
md5:efd1fb0b7c393d1ef7184a7a9342e315
526.7 MB Preview Download
md5:6673b10cd5b2aa35963a479b79915513
522.7 MB Preview Download
md5:68233e8c424f7ba7346d7c53c545b6de
523.7 MB Preview Download
md5:f11394a164d446b5bf327c5e9303cf0d
466.5 MB Preview Download
md5:61bab1a17bb43931cee7e474446532a6
511.3 MB Preview Download
md5:b34919e3545d79d7c52d5580c2f7325c
354.9 MB Preview Download
md5:71c8018c217be5dd95b31284628f8a01
512.9 MB Preview Download
md5:7b152d911aea1797a0ec13cb6da9c911
513.2 MB Preview Download
md5:1a9ea51401a3166c175a1504f9c9e91a
525.9 MB Preview Download
md5:e1034f7f575cc6a5007d9533ffae4a9b
509.5 MB Preview Download
md5:f04296e534afd12748627d6c840bbe8a
514.7 MB Preview Download
md5:a3d1826d83a03e2fedcb218b50407bb0
521.1 MB Preview Download
md5:1a4bb5be01e08269c5cf12c175f9a5a3
365.4 MB Preview Download
md5:a633fb54ee5750147aa2f479431a2cb4
520.6 MB Preview Download
md5:58780f3f1caea91d46fa1405ef10d009
1.5 MB Preview Download
md5:63023b9a7457d07e11e82d03cb9b98bd
234.0 MB Preview Download
md5:e3b3f3055de2d7dc5f7b954b7f0db1a4
489.6 MB Preview Download
md5:439d0e6ac70f43e1ea8dcdd55c6d88f8
501.3 MB Preview Download
md5:b8d0b85b6220878d1f0bda3228e5e52d
517.1 MB Preview Download
md5:2cba4fcf016f93359fa918dddadb54f7
533.4 MB Preview Download
md5:04aa91f3af65adb50dac3a793483fb77
486.7 MB Preview Download
md5:5ede35f4a23bb5915e077fed87d87efc
514.2 MB Preview Download
md5:df813e39ed8ca54036c0aca2b5cd72a9
518.1 MB Preview Download
md5:cea3070ee2e1569ac6d80954b0bb8cdc
520.4 MB Preview Download
md5:d83eb84d2242a8197e85fe0818e2754c
525.6 MB Preview Download
md5:7b2548b7eff413391cba3bce00431502
518.8 MB Preview Download
md5:5aac1ac565031bfdd1beedd3bc4ed7fa
353.8 MB Preview Download
md5:b05abdd3bb2683fef6a7a9ff62abe997
510.9 MB Preview Download
md5:0d9ab5853b64703a795bf9e94cedc558
515.3 MB Preview Download
md5:f65a985ea5dca82079bb9d50bcb54976
516.7 MB Preview Download
md5:45a5c9f16b9d62ec4e65ad0f8ded395e
528.2 MB Preview Download
md5:eeb9267e924f039ec89b8bfeba94402b
529.4 MB Preview Download
md5:b31921d6758406828a4eeaf5ba14394e
527.9 MB Preview Download
md5:cee50f8cd2bf469497c83fadc73a9e52
521.7 MB Preview Download
md5:f53f8fc2b55a06dbb05c8da3a9d25cdf
525.9 MB Preview Download
md5:f52785af0e58bf4b636d748fb982fc83
523.2 MB Preview Download
md5:2946b0269a53fb613a61426b8f9f033f
518.5 MB Preview Download
md5:3aecdbb6b1d0bc7e16c8403bff41724b
459.5 MB Preview Download
md5:06da224d8a973f1e6667948475abf6c9
435.9 MB Preview Download
md5:b94190d2b2a657d17b7436680d759ba3
537.7 MB Preview Download
md5:bd8fd65abeda73b65639aa745221221b
535.1 MB Preview Download
md5:59dd314cca4ba9c7833e71abd0d905c2
508.3 MB Preview Download
md5:d216d052b7c5d5388c97d10442c1e70c
516.8 MB Preview Download
md5:ae5bf55e75e467992cbb36ff331a2c65
306.9 MB Preview Download
md5:dee0e805ec99587c8a8c45998e4d824d
511.9 MB Preview Download
md5:ab9b8d7a64a99871845e4b842333faf5
518.3 MB Preview Download
md5:62176005731c8e9d59805170a5d9b4d9
481.9 MB Preview Download
md5:2a7315205d5029982a00030a7ab5e51b
527.7 MB Preview Download
md5:dd20a12d18d7c5e2336d1f7cc46ff533
528.3 MB Preview Download
md5:e0dd52b29f7c1a0ccceb6235d1f8b957
291.7 MB Preview Download
md5:209c3b0aa9ecb897e1156bb3bef80bf7
472.0 MB Preview Download
md5:36b8752c8135420e2209c8883da18353
508.6 MB Preview Download
md5:cc9fc870d59824f9272f4d47643d4934
501.3 MB Preview Download
md5:269edc3a4e556d873a8e4a18ce22d5df
499.7 MB Preview Download
md5:a810f3137caa9b8f7aeceacef3cab699
521.4 MB Preview Download
md5:7616dcad3b9df1ab4e91d16e20d4e887
3.5 kB Preview Download
md5:37d3a8e2bedca7c0874f8f27254f2121
525.3 MB Preview Download
md5:04d3dd17ff169be2d44a599bd99a42df
532.6 MB Preview Download
md5:015171103f77855f694d41f4019262e4
518.4 MB Preview Download
md5:c59d1c7410f984e536bb693868222ead
232.6 MB Preview Download
md5:0fbcde63efeea2b28427e52e8250079a
502.9 MB Preview Download
md5:bddb9eb9a47ba750a1ab629f21575eb0
539.5 MB Preview Download
md5:be9ae9b3c4443d747a5dc0653b80fcf1
533.3 MB Preview Download
md5:ff95ae98b007b6096799979dc00585bc
517.1 MB Preview Download
md5:d25b922377da2081e7bb4a3e5626e64c
506.1 MB Preview Download
md5:8525d3a812470e76abcdd8fc1c9bc3da
506.4 MB Preview Download
md5:6a5bb57907499e6e3d41355f839f185e
517.0 MB Preview Download
md5:fe66e3c0d2ba9d156e3e376872c86471
263.3 MB Preview Download
md5:d0fca8b0073ff999f05c0c4f2f21c094
497.8 MB Preview Download
md5:ca6a0adbb80bbf059d3a34382c2a3982
483.6 MB Preview Download
md5:0fee000444b5f7ea9262d833201ce15d
509.6 MB Preview Download
md5:a1398621c89387f4cd980ec0d471a77e
497.8 MB Preview Download
md5:242ea2b11fd8fb8116b18b02a7934f1e
58.0 MB Preview Download
md5:22626d5669a336d88a17b35dd7200d13
463.0 MB Preview Download
md5:5309c6c68f85fc4c0f89895044361cf1
444.5 MB Preview Download
md5:011434d8b288c159ed764276d70eab2e
515.2 MB Preview Download
md5:af3c39991ffdd9ca3c8c1572bc64ea51
530.8 MB Preview Download

Additional details

Dates

Updated
2025-01-01