Published January 1, 2025 | Version 1
Dataset Open

geoSABINA: Environmental variables

  • 1. Universidad Autonoma de Madrid Facultad de Ciencias
  • 2. Centro de Investigación en Biodiversidad y Cambio Global CIBC-UAM

Description

This dataset provides environmental variables from Spain, selected for their relevance in modeling the distribution of plant species. However, they can also be applied to other species and purposes. It includes a total of 103 raster layers in tif format at 250-meter resolution. The detailed list of layers available is provided in data_table_env_variables.csv, which includes information on the category, dataset, description, resolution, time period, and path.

This dataset includes:  

  1.  Climatic variables: 19 bioclimatic variables under current (1990-2010) and 4 future (2071-2100) climate scenarios. Climatic variables were sourced from the climatologies for the Earth’s Land Surface Areas (CHELSA) and downscaled to 250 m in https://doi.org/10.1111/ecog.07328. The future scenarios were generated according two global climate models [the latest Institute Pierre Simon Laplace climate model (IPSL_CM6A_LR) and the Meteorological Research Institute Earth System Model version 2.0 (MRI_ESM2)] and two socio-economic pathways: an optimistic low greenhouse gas emissions scenario (SSP126) and a pessimistic high emissions scenario (SSP585). The climatic variables of each scenario are compressed within a zip file.
  2. Edaphic variables: Four soil characteristics (pH, nitrogen, sand content, organic carbon) at 0 to 5 cm depth sourced from SoilGrids. The four edaphic variables are compressed within a zip file.
  3. Hydrologic variables: Three hydrologic variables (distance to rivers, flow accumulation, and topographic index) derived from the digital elevation model DAT-193-en (Copernicus Land Cover Service) in https://doi.org/10.1111/ecog.07328.  
  4. Solar radiation:  Annual solar exposure values calculated from the digital elevation model DAT-193-en  in https://doi.org/10.1111/ecog.07328. 

Raster information:

  • Resolution: 250 m
  • Extent: -75888.32, 1031611.68, 3977269.52, 4870519.52 (xmin, xmax, ymin, ymax)
  • CRS: WGS 84 / UTM Zone 30N (EPSG:32630)

References: The references in this list should be added to any publication using these data:

  • Goicolea, T., Morales-Barbero, J., García-Viñas, J.I, Gastón, A., Aroca-Fernández, M.J., Calleja, J.A., Moren, J.C. , Ramos-Gutiérrez, I., Rodríguez, M.A., Lima, H., Broennimann, O., Guisan, A, Adde, A., Pérez-Latorre, A.V., G. Mateo, R. (2025) Scientific Data.
  • Goicolea, T., Adde, A., Broennimann, O., García-Viñas, J.I., Gastón, A., Aroca-Fernández, M.J. et al. (2024). Spatially-Nested Hierarchical Species Distribution Models to Overcome Niche Truncation in National-Scale Studies. Ecography. https://doi.org/10.1111/ecog.07328

Files

climatic_current.zip

Files (3.3 GB)

Name Size Download all
md5:010635a4c415cee9c869769e35a36a75
621.9 MB Preview Download
md5:758159e0d45c1f758effc9c86d01b30a
620.4 MB Preview Download
md5:d00055db8980563886c87711adef93d5
619.7 MB Preview Download
md5:568757476d5ec737686a82a8533add46
620.6 MB Preview Download
md5:3291df9968f9537d67ae35c367904bb7
620.3 MB Preview Download
md5:4a59a040218eb43865e7faa57ce70a19
44.7 kB Preview Download
md5:a07cd968b8bc9a95273ddccf8d63cef7
130.2 MB Preview Download
md5:cab078f76bb249c1a7f7a3c698ac58c4
79.8 MB Preview Download
md5:7292b8b4ee4e143b97eefe335818f0c7
33.6 MB Preview Download
md5:a6c06cb03de0d925089afb2299d9658a
3.4 kB Preview Download

Additional details

Dates

Updated
2025-01-01