Published September 30, 2024 | Version CC-BY-NC-ND 4.0
Journal article Open

Tongue Image Diagnosis System using Machine Learning with Hand-Crafted Features

  • 1. Department of Electronics & Telecommunication, Prof Ram Meghe College of Engineering & Management New Express Way Badnera, Amravati (Maharashtra), India.

Contributors

Contact person:

  • 1. Department of Electronics & Telecommunication, Prof Ram Meghe College of Engineering & Management New Express Way Badnera, Amravati (Maharashtra), India.

Description

Abstract: Traditional Chinese Medicine theorizes a clear relationship between the visual characteristics of the tongue and the operational condition of the body's organs. The visual characteristics of the tongue can offer important indications for diagnosing diseases. Investigating tongue image processing methods for automated disease identification is a flourishing field of study in the modernization of Traditional Chinese Medicine. Although autonomous extraction of high-dimensional features is inherently more beneficial in deep learning than in conventional methods, its usefulness in medical image analysis, notably in tongue images, is restricted by the need for extensive training data. This limitation arises from the need for more labeled images. This paper demonstrated the automated diagnosis of tongue photos by analyzing digital images utilizing Image Processing techniques and using Machine Learning using major image-based features. The performance simulation and analysis of the suggested system are conducted using MATLAB Software.

Files

L109711121224.pdf

Files (510.5 kB)

Name Size Download all
md5:bf9b13347ff561030b8ea37befc47d4d
510.5 kB Preview Download

Additional details

Identifiers

Dates

Accepted
2024-09-15
Manuscript received on 01 September 2024 | Revised Manuscript received on 13 September 2024 | Manuscript Accepted on 15 September 2024 | Manuscript published on 30 September 2024.

References

  • Tiryaki, B., Torenek-Agirman, K., Miloglu, O. et al. Artificial intelligence in tongue diagnosis: classification of tongue lesions and normal tongue images using deep convolutional neural network. BMC Med Imaging 24, 59 (2024). Doi: https://doi.org/10.1186/s12880-024-01234-3
  • Jiatuo, X., Tao, J., & Shi, L. (2024). Research status and prospect of tongue image diagnosis analysis based on machine learning. Digital Chinese Medicine, 7(1), 3-12. Doi: https://doi.org/10.1016/j.dcmed.2024.04.002
  • Chang, H., Chen, C., Wu, K., Hsu, C., Lo, C., Chu, T., & Chang, H. (2024). Tongue feature dataset construction and real-time detection. PLOS ONE, 19(3), e0296070. Doi: https://doi.org/10.1371/journal.pone.0296070
  • Bhatnagar, V., & Bansod, P. P. (2023). Convolution Neural Network Based Multi-Label Disease Detection Using Smartphone Captured Tongue Images. Applied Sciences, 14(10), 4208. Doi: https://doi.org/10.3390/app14104208
  • Segawa, M., Iizuka, N., Ogihara, H., Tanaka, K., Nakae, H., Usuku, K., Yamaguchi, K., Wada, K., Uchizono, A., Nakamura, Y., Nishida, Y., Ueda, T., Shiota, A., Hasunuma, N., Nakahara, K., Hebiguchi, M., & Hamamoto, Y. (2023). Objective evaluation of tongue diagnosis ability using a tongue diagnosis e-learning/e-assessment system based on a standardized tongue image database. Frontiers in Medical Technology, 5, 1050909. Doi: https://doi.org/10.3389/fmedt.2023.1050909
  • Liu, Q., Li, Y., Yang, P., Liu, Q., Wang, C., Chen, K., & Wu, Z. (2023). A survey of artificial intelligence in tongue image for disease diagnosis and syndrome differentiation. Digital Health, 9. Doi: https://doi.org/10.1177/20552076231191044
  • Iqbal, S., N. Qureshi, A., Li, J. et al. On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks. Arch Computat Methods Eng 30, 3173–3233 (2023). Doi: https://doi.org/10.1007/s11831-023-09899-9
  • Tang, Wenjun & Gao, Yuan & Liu, Lei & Xia, Tingwei & He, Li & Zhang, Song & Guo, Jinhong & Li, Weihong & Xu, Qiang. (2020). An Automatic Recognition of Tooth-Marked Tongue Based on Tongue Region Detection and Tongue Landmark Detection via Deep Learning. IEEE Access. PP. 1-1. Doi: https://doi.org/10.1109/ACCESS.2020.3017725
  • Zhang, Hong-Kai & Yang Yang Hu, Yang Yang Hu & Xue-Li, & Wang, Li-Juan & Zhang, Wen-Qiang & Li, Fu-Feng. (2018). Computer Identification and Quantification of Fissured Tongue Diagnosis. 1953-1958. Doi: https://doi.org/10.1109/BIBM.2018.8621114
  • Wan, Chao & Zhang, Yue & Xia, Chunming & Qian, Peng & Wang, Yiqin. (2019). Fissured Tongue Image Recognition Based on Support Vector Machine. 1-5. Doi: https://doi.org/10.1109/CISP-BMEI48845.2019.8965785
  • Li, Bo & Xu, Kele & Feng, Dawei & Mi, Haibo & Wang, Huaimin & Zhu, Jian. (2019). Denoising Convolutional Autoencoder Based B-Mode Ultrasound Tongue Image Feature Extraction. Doi: https://doi.org/10.1109/ICASSP.2019.8682806
  • Trajanovski, Stojan & Shan, Caifeng & Weijtmans, Pim & Koning, Susan & Ruers, Theo. (2021). Tongue Tumor Detection in Hyperspectral Images Using Deep Learning Semantic Segmentation. IEEE Transactions on Biomedical Engineering. 68. 1330-1340. Doi: https://doi.org/10.1109/TBME.2020.3026683
  • Meng, Dan & Cao, Guitao & Duan, Ye & Zhu, Minghua & Tu, Liping & Xu, Dong & Xu, Jiatuo. (2017). Tongue Images Classification Based on Constrained High Dispersal Network. Evidence-Based Complementary and Alternative Medicine. 2017. 1-12. Doi: https://doi.org/10.1155/2017/7452427
  • Lu, Yunxi & Li, Xiaoguang & Zhuo, Li & Zhang, Jing & Zhang, Hui. (2018). Dccn: A Deep-Color Correction Network For Traditional Chinese Medicine Tongue Images. 1-6. Doi: https://doi.org/10.1109/ICMEW.2018.8551514
  • Zhou, Jianhang & Zhang, Qi & Zhang, Bob & Chen, Xiaojiao. (2019). TongueNet: A Precise and Fast Tongue Segmentation System Using U-Net with a Morphological Processing Layer. Applied Sciences. 9. 3128. Doi: https://doi.org/10.3390/app9153128
  • Chang, Wen-Hsien & Wu, Han-Kuei & Lo, Lun-chien & Hsiao, William & Chu, Hsueh-Ting & Chang, Hen-Hong. (2019). Tongue fissure visualization by using deep learning – an example of the application of artificial intelligence in traditional medicine. Doi: https://doi.org/10.21203/rs.2.19210/v3
  • Dai, Yinglong & Wang, Guojun. (2018). Analyzing Tongue Images Using a Conceptual Alignment Deep Autoencoder. IEEE Access. PP. 1-1. Doi: https://doi.org/10.1109/ACCESS.2017.2788849
  • Fauzan, Muhammad & Harmoko, Adhi & Kiswanjaya, Bramma. (2018). Smoker's Tongue Recognition System based on Spectral and Texture Features using Visible Near-Infrared Imaging. 101-105. Doi: https://doi.org/10.1109/ICELTICS.2018.8548905
  • Feng, Ming & Wang, Yin & Xu, Kele & Wang, Huaimin & Ding, Bo. (2021). Improving Ultrasound Tongue Contour Extraction Using U-Net and Shape Consistency-Based Regularizer. 6443-6447. Doi: https://doi.org/10.1109/ICASSP39728.2021.9414420
  • Ning, Jifeng & Zhang, David & Wu, Chengke & Yue, Songfeng. (2010). Automatic tongue image segmentation based on gradient vector flow and region merging. Neural Computing and Applications - NCA. 21. 1-8. Doi: https://doi.org/10.1007/s00521-010-0484-3
  • Yogi Zulfadli, Arry Verdian, Muhammad Mamur, "Disease Diagnosis Using Tongue Image Analysis", 3rd International Conferences on Information Technology and Business (ICITB) , 7th Dec 2017, pp. 133-136. http://repository.upbatam.ac.id/1828/1/Prosiding%20ICITB.pdf
  • Zhou, Zibo & Peng, Dongliang & Gao, Fumeng & Lu, Leng. (2019). Medical Diagnosis Algorithm Based on Tongue Image on Mobile Device. Journal of Multimedia Information System. 6. 99-106. Doi: https://doi.org/10.33851/JMIS.2019.6.2.99
  • Li, Xiaoqiang & Zhang, Yin & Cui, Qing & Yi, Xiaoming & Zhang, Yi. (2018). Tooth-Marked Tongue Recognition Using Multiple Instance Learning and CNN Features. IEEE Transactions on Cybernetics. PP. 1-8. Doi: https://doi.org/10.1109/TCYB.2017.2772289
  • Li, Xinlei & Yang, Dawei & Wang, Yan & Yang, Shuai & Qi, Lizhe & Li, Fufeng & Gan, Zhongxue & Zhang, Wenqiang. (2019). Automatic Tongue Image Segmentation For Real-Time Remote Diagnosis. 409-414. Doi: https://doi.org/10.1109/BIBM47256.2019.8982947
  • Mansour, Romany & Althobaiti, Maha & Ashour, Amal. (2021). Internet of Things and Synergic Deep Learning Based Biomedical Tongue Color Image Analysis for Disease Diagnosis and Classification. IEEE Access. PP. 1-1. Doi: https://doi.org/10.1109/ACCESS.2021.3094226
  • Mozaffari, Mohammad Hamed & Lee, Won-Sook. (2020). Deep Learning for Automatic Tracking of Tongue Surface in Real-time Ultrasound Videos, Landmarks instead of Contours. Doi: https://doi.org/10.1109/BIBM49941.2020.9313262
  • Porras, Dagoberto & Sepulveda, Alexander & Csapó, Tamás. (2019). DNN-based Acoustic-to-Articulatory Inversion using Ultrasound Tongue Imaging. 1-8. Doi: https://doi.org/10.1109/IJCNN.2019.8851769
  • T. Qiu, "Tongue Identification for Small Samples Based on Meta Learning," 2020 International Conference on Computer Information and Big Data Applications (CIBDA), 2020, pp. 295-299, Doi: https://doi.org/10.1109/CIBDA50819.2020.00073
  • Jiang, Tao & Hu, Xiao-juan & Yao, Xing-hua & Tu, Li-ping & Huang, Jing-bin & Ma, Xu-xiang & Cui, Ji & Wu, Qing-feng & Xu, Jiatuo. (2020). Tongue Image Quality Assessment Based on Deep Convolutional Neural Network. Doi: https://doi.org/10.21203/rs.3.rs-91687/v1
  • Cattaneo, Camilla & Liu, Jing & Wang, Chenhao & Pagliarini, Ella & Sporring, Jon & Bredie, Wender. (2020). Comparison of manual and machine learning image processing approaches to determine fungiform papillae on the tongue. Scientific Reports. 10. Doi: https://doi.org/10.1038/s41598-020-75678-2
  • Song, Chao & Wang, Bin & Xu, Jiatuo. (2020). Classifying Tongue Images using Deep Transfer Learning. 103-107. Doi: https://doi.org/10.1109/ICCIA49625.2020.00027
  • E. Srividhya and A. Muthukumaravel, "Diagnosis of Diabetes by Tongue Analysis," 2019 1st International Conference on Advances in Information Technology (ICAIT), 2019, pp. 217-222, Doi: https://doi.org/10.1109/ICAIT47043.2019.8987391
  • Vijayalakshmi, A & Shahaana, M & Nivetha, N & Subramaniam, Kamalraj. (2020). Development of Prognosis Tool for Type-II Diabetics using Tongue Image Analysis. 617-619. Doi: https://doi.org/10.1109/ICACCS48705.2020.9074437
  • Dodia, R. V., & Sahoo, Dr. S. (2021). A Review on General Overview About Diabetes Mellitus. In International Journal of Advanced Pharmaceutical Sciences and Research (Vol. 1, Issue 3, pp. 1–3). Doi: https://doi.org/10.54105/ijapsr.B4005.121321
  • Priya, M., & Karthikeyan, M. (2019). Data Mining Technique for Diabetes Diagnosis using Classification Algorithms. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 9044–9049). Doi: https://doi.org/10.35940/ijrte.D4429.118419
  • Singla, S., Kesheri, M., Kanchan, S., & S, A. (2019). Current Status and Data Analysis of Diabetes in India. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 9, pp. 1920–1934). Doi: https://doi.org/10.35940/ijitee.I8403.078919