Published December 23, 2024
| Version v2
Software
Open
Fully differentiable, fully distributed River Discharge Prediction: code
Description
This repository contains the data sets used in: Scholz et al. (2024). Fully differentiable, fully distributed River Discharge Prediction.
- Create conda environment:
conda env create -f environment.yml - Configure experiment in
config.yaml - Run experiment:
python train.py - Evaluate experiment: Set
train: Falseandname_checkpointinconfig.yamland runpython evaluate.py - Create attributions:
python interpret.py
Files
src.zip
Files
(42.2 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:b66c808770abe2f321c4ea304172cc62
|
42.2 kB | Preview Download |
Additional details
References
- Yadan, O.: Hydra - A framework for elegantly configuring complex applications, Github, https://github.com/facebookresearch/hydra, 2019.
- Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in Python, Journal of Open Research Software, 5, https://doi.org/10.5334/jors.148, 2017.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, p. 12, 2019.