Published December 12, 2024
| Version v1
Dataset
Open
deepFPlearn - datasets, models, and configurations
Authors/Creators
Description
This repository contains
- all datasets used for training and testing the models
- all trained models, and
- the JSON configuration files used to train or test the models,
as described in the original publication.
Datasets
dataset_train_ae.[pkl,tsv]: Data used for training the generic autoencoderdataset_train_fnn.[pkl,csv]: Data used for training the feed forward network (classification task)dataset_comptox.[pkl,tsv]: Unlabeled data used to provide first predictionsdataset_predictions_comptox_all.csv: Results of predicting the unlabeled data with all models individually
Models
model_trained_ae*: trained Autoencoder (ae) model as published in https://doi.org/10.1093/bib/bbac257model_trained_ae_weights.hdf5: the weights of the trained model, represents input for the prediction tasksmodel_trained_ae_saved_model.tar: the full model, can also be loaded and used for prediction
model_trained_fnn_[AR, ER, GR, TR, Aromatase, PPARg, ED]*: Classification models as published in https://doi.org/10.1093/bib/bbac257 for the different targets androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR), Aromatase, PPARg, and more generally with endocrine disruption (ED).model_trained_fnn_[target]_model.weights.hdf5: the weights of the trained model, represents input for the prediction tasksmodel_trained_fnn_[target]_saved_model.tar: the full model, can also be loaded and used for predictionmodel_trained_fnn_[target]_history.[csv,svg]: the training history (all logged metrics) as table and x-y plotmodel_trained_fnn_[target]_predicted.testdata: the predictions on the test data after training
Configuration files
configFile_train_ae.json: Train the autoencoderconfigFile_train_fnn.json: Train the feed forward network without including the autoencoder (on uncompressed fingerprints)configFile_train_fnn_compressed.json: Train the feed forward network including the autoencoder (on compressed/encoded fingerprints)configFile_predict_comptox_[target].json: Use the trained autoencoder and each (w.r.t. target) of the trained feed forward models to predict the unlabeled comptox dataset
Files
configFile_predict_comptox_AR.json
Files
(3.8 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:c52d7cdf03e7b3757773e439559ee251
|
340 Bytes | Preview Download |
|
md5:0d86dff7d7883aa826dca2794f547506
|
354 Bytes | Preview Download |
|
md5:bafba1aa5f2aad2b7fc854db00002d6f
|
340 Bytes | Preview Download |
|
md5:6d8b77afed2a852d8c8591d701766e84
|
340 Bytes | Preview Download |
|
md5:33456af39e84511731270d2d45081d2c
|
340 Bytes | Preview Download |
|
md5:73495c5a41f2e2b32393691666dba32e
|
346 Bytes | Preview Download |
|
md5:79d09343305663393efd58baddd3ca1a
|
340 Bytes | Preview Download |
|
md5:cd8323c24f4497f3e7d591e093f34b1e
|
600 Bytes | Preview Download |
|
md5:272c6ba82a1c7c2bbd43d760ca2eb4cf
|
607 Bytes | Preview Download |
|
md5:afabf8d5902382188745620ec4df1ff9
|
646 Bytes | Preview Download |
|
md5:5ecb32283f6e0b11f4ea195af17b1bf3
|
1.6 GB | Download |
|
md5:e5cf18d2c800e7a86757f4698e5c3ba8
|
100.6 MB | Download |
|
md5:a3b7c1bb7a867f5bd9b4a7ba38cb772c
|
155.8 MB | Preview Download |
|
md5:becc82537e2fffa2512f4f426494277e
|
664.8 kB | Preview Download |
|
md5:e1202a0c7c6d4eca919799315338729f
|
661.1 kB | Preview Download |
|
md5:5d69b1fd5c066d78b121d38f8377d5e1
|
627.2 kB | Preview Download |
|
md5:5ecb32283f6e0b11f4ea195af17b1bf3
|
1.6 GB | Download |
|
md5:e5cf18d2c800e7a86757f4698e5c3ba8
|
100.6 MB | Download |
|
md5:7afcf9b0c7343514530b1343c119951e
|
368.8 kB | Preview Download |
|
md5:0818fdcf3ebef224c598d926fa4900de
|
15.8 MB | Download |
|
md5:9ab9611c9b80e12fb85c34f7c2f52510
|
10.5 kB | Download |
|
md5:66960bc8024b2512986ac05d455c58bd
|
77.5 kB | Preview Download |
|
md5:c788bc33e68cb4fdf0be1bd8f955afb5
|
53.1 kB | Download |
|
md5:9f3bde8eab0225d8ba46c80cb8721a91
|
11.1 MB | Download |
|
md5:b8042528189d1180ec0bd02a32f9acc8
|
22.1 MB | Download |
|
md5:f65b5f54c1c6f91964800efddab35193
|
44.6 kB | Preview Download |
|
md5:fa3fb19f0d0a623de9ca114178d42157
|
50.1 kB | Download |
|
md5:991ad41473c9c904f3a909ae069d5570
|
11.2 MB | Download |
|
md5:f548948e238a50feb28f65e28f3068c2
|
163 Bytes | Preview Download |
|
md5:66e65d10448f199addedac764bce5f61
|
25.3 kB | Download |
|
md5:1383cbd6235854112f1262d65c63b142
|
46.7 kB | Preview Download |
|
md5:97cffa2fc9002641ad64df7a9f2cc80b
|
164 Bytes | Preview Download |
|
md5:064d17f28c0afca50f94d67547a7ef44
|
11.3 MB | Download |
|
md5:1bae48f005ad829ea8270444066f70d3
|
22.7 kB | Preview Download |
|
md5:68732e27141f49b525d0965acd947161
|
54.6 kB | Download |
|
md5:529853719a0011efa88b842f0767d35d
|
11.2 MB | Download |
|
md5:686e3c4a0966a91e0697e7a15125e35f
|
185 Bytes | Preview Download |
|
md5:6b8b95f5cdb29b30598a02c22eeb8d20
|
26.1 kB | Download |
|
md5:758afff08c8911df0ca949dbe6023624
|
37.0 kB | Preview Download |
|
md5:9b07060d2af915028cd1b850f289a72d
|
165 Bytes | Preview Download |
|
md5:9b3f4569739db48a07e655ccb7fbad10
|
11.3 MB | Download |
|
md5:50790396e573d28e967461d2e7a9cc06
|
26.7 kB | Preview Download |
|
md5:930e17c575d0f8f25d1ee4fda66ba7db
|
47.7 kB | Download |
|
md5:89ef4281c3d8192af3fd96ea6946c25f
|
11.2 MB | Download |
|
md5:2d0bb3010b172deb365c38eb6d07705e
|
164 Bytes | Preview Download |
|
md5:210dedb1f812334b078a7ab63b64c173
|
25.0 kB | Download |
|
md5:6b95f3730daff6aecd40b338889178db
|
91.2 kB | Preview Download |
|
md5:762caf4b83a220ffcf5a079b5f8210cd
|
165 Bytes | Preview Download |
|
md5:08c04c38181882096407614ea4950a9e
|
11.3 MB | Download |
|
md5:6030f6fc05494269b6dbba7145400d3b
|
29.0 kB | Preview Download |
|
md5:41c00edbe1afd51cf0864c8c721560aa
|
46.6 kB | Download |
|
md5:08b21be10300457b5b5961c4d0e78194
|
11.2 MB | Download |
|
md5:5862c34b44ce7770180974310cd36247
|
164 Bytes | Preview Download |
|
md5:f78c197e0b82cd0ab484ee2a417e7091
|
25.8 kB | Download |
|
md5:ac8242215ca3a5b447039fa443980494
|
57.9 kB | Preview Download |
|
md5:29c1887c69009a13d2e02f198abdf7f4
|
165 Bytes | Preview Download |
|
md5:2c399a9369eb081dd7209799f29e1918
|
11.3 MB | Download |
|
md5:6885f3a478afb3ce27fd56f47599ff97
|
2.6 kB | Download |
|
md5:bc03389544a4d7ea70548b609e32754c
|
36.8 kB | Preview Download |
|
md5:d888fb8b45318008086585495eb1d0e4
|
47.9 kB | Download |
|
md5:369813d7b785a87a80b9bf7db8e910d1
|
11.2 MB | Download |
|
md5:a28b33aa70eaf4d043e8305a7a1585f4
|
161 Bytes | Preview Download |
|
md5:606967ec7a6995e15df852822d2db6f0
|
25.4 kB | Download |
|
md5:8fea9a7c5895ca2707228ec42cc85039
|
26.0 kB | Preview Download |
|
md5:e24817a5a2726cf37ff8b87eac9a8e5c
|
165 Bytes | Preview Download |
|
md5:87c1142cc1df4e7acd9cb9500e9c2ae9
|
11.3 MB | Download |
|
md5:a87d72dd5abc0e870bee50887b0893f3
|
24.1 kB | Preview Download |
|
md5:160fc8c41ab3f0ae3106eb3e63dceade
|
56.2 kB | Download |
|
md5:72735cb6dbe7854372ace554238ca545
|
11.2 MB | Download |
|
md5:c1896fdddb1db8cab52b30284186adf4
|
170 Bytes | Preview Download |
|
md5:c2ebdd149071581627caf246e71d4f3f
|
26.4 kB | Download |
|
md5:5cd89f3c3b27c227b75aa41bda56e453
|
26.6 kB | Preview Download |
|
md5:efabb3b9ea850d8ffd327663915fefb8
|
165 Bytes | Preview Download |
|
md5:1c9a299a2ae63034ae950183f255fb38
|
11.3 MB | Download |
|
md5:603b1c06b886e876f96454e84703c414
|
1.4 kB | Preview Download |
|
md5:71452249c6e5dbe2350dc99c87b5514b
|
23.6 kB | Preview Download |
|
md5:cfa272f39d5f5c93204d6071d5c2e4db
|
56.0 kB | Download |
|
md5:88b058385187335ac6bda0344cca5f86
|
11.2 MB | Download |
|
md5:1dafc4d9281bac07fa3ce6b63441f872
|
164 Bytes | Preview Download |
|
md5:34990a7837bed594e78082eb5695442b
|
24.3 kB | Download |
|
md5:89e26336592a42b92f99ca47c5c87d69
|
15.7 kB | Preview Download |
|
md5:f494597d0e21ced6f252044950deef5a
|
165 Bytes | Preview Download |
|
md5:07336a92c3f4ed09adc19f75869e3d90
|
11.3 MB | Download |
|
md5:d5b0b15ebe1463caa61fcbeb1ab3aa0f
|
78.5 kB | Download |
Additional details
Related works
- Is described by
- Journal article: 10.1093/bib/bbac257 (DOI)
- Is supplement to
- Software: 10.5281/zenodo.13329412 (DOI)
Software
- Repository URL
- https://github.com/yigbt/deepFPlearn
- Programming language
- Python
- Development Status
- Active