There is a newer version of the record available.

Published December 6, 2024 | Version v2
Preprint Open

Enhancing creep resistance in refractory high-entropy alloys: the role of grain size and local chemical order

  • 1. ROR icon Bangladesh University of Engineering and Technology
  • 2. ROR icon Massachusetts Institute of Technology
  • 1. ROR icon Bangladesh University of Engineering and Technology
  • 2. ROR icon Massachusetts Institute of Technology

Description

Refractory high-entropy alloys (RHEAs) are a promising class of materials with potential applications in extreme environments, where the dominant failure mode is thermal creep. The design of these alloys, therefore, requires an understanding of how their microstructure and local chemical distribution affect creep behavior. In this study, we performed high-fidelity atomistic simulations using machine-learning interatomic potentials to explore the creep deformation of MoNbTaW RHEAs under a wide range of stress and temperature conditions. We parametrized grain size and local chemical order (LCO) to investigate the effects of these two important design variables, which are controllable during the alloy fabrication process. Our investigation revealed that resistance to creep deformation is enhanced by larger grain sizes and higher levels of LCO. This study highlights the importance of utilizing LCO in conjunction with other microstructural properties when designing RHEAs for extreme environment applications.

Files

Creep.pdf

Files (1.1 MB)

Name Size Download all
md5:889104f7333052f5ea9efd52c63e5a18
1.1 MB Preview Download

Additional details

Identifiers

Dates

Available
2024-11-30

References

  • 1. Neeraj T, Hou DH, Daehn GS, Mills MJ. Phenomenological and microstructural analysis of room temperature creep in titanium alloys. Acta Materialia. 2000;48(6):1225–38. 2. Xia W, Zhao X, Yue L, Zhang Z. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: A review. J Alloys Compd. 2020;819:152954. 3. Pournajar M, Moretti P, Hosseini SA, Zaiser M. Creep failure of hierarchical materials. Scientific Reports. 2024;14(1):4238. 4. Darling KA, Rajagopalan M, Komarasamy M, Bhatia MA, Hornbuckle BC, Mishra RS, et al. Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature. 2016;537(7620):378–81. 5. Sherby OD, Taleff EM. Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids. Materials Science and Engineering: A. 2002;322(1–2):89–99. 6. Kamata SY, Kanekon D, Lu Y, Sekido N, Maruyama K, Eggeler G, et al. Ultrahigh-temperature tensile creep of TiC-reinforced Mo-Si-B-based alloy. Scientific Reports. 2018;8(1):10487. 7. Choudhuri D, Srinivasan SG, Gibson MA, Zheng Y, Jaeger DL, Fraser HL, et al. Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening. Nature Communications. 2017;8(1):2000. 8. Song G, Sun Z, Li L, Xu X, Rawlings M, Liebscher CH, et al. Ferritic alloys with extreme creep resistance via coherent hierarchical precipitates. Scientific Reports. 2015;5(1):16327. 9. Song G, Sun Z, Li L, Xu X, Rawlings M, Liebscher CH, et al. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates. Scientific Reports. 2015;5(1):16327. 10. Smith TM, Kantzos CA, Zarkevich NA, Harder BJ, Heczko M, Gradl PR, et al. A 3D printable alloy designed for extreme environments. Nature. 2023;617(7961):513–8. 11. Ye YF, Wang Q, Lu J, Liu CT, Yang Y. High-entropy alloy: challenges and prospects. Materials Today. 2016;19(6):349–62. 12. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nature Reviews Materials. 2019;4(8):515–34. 13. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. 14. Tsao TK, Yeh AC, Kuo CM, Kakehi K, Murakami H, Yeh JW, et al. The high temperature tensile and creep behaviors of high entropy superalloy. Scientific Reports. 2017;7(1):12658. 15. Krishna SA, Noble N, Radhika N, Saleh B. A comprehensive review on advances in high entropy alloys: Fabrication and surface modification methods, properties, applications, and future prospects. Journal of Manufacturing Processes. 2024;109:583–606. 16. Han L, Zhu S, Rao Z, Scheu C, Ponge D, Ludwig A, et al. Multifunctional high-entropy materials. Nature Reviews Materials. 2024;9(12):846–65. 17. El Atwani O, Vo HT, Tunes MA, Lee C, Alvarado A, Krienke N, et al. A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments. Nature Communications. 2023;14(1):2516. 18. Tsuru T, Han S, Matsuura S, Chen Z, Kishida K, Iobzenko I, et al. Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys. Nature Communications. 2024;15(1):1706. 19. Zhao X, Huang H, Su Y, Qiao L, Yan Y. Exploring high corrosion-resistant refractory high-entropy alloy via a combined experimental and simulation study. Npj Mater Degrad. 2024;8(1):77. 20. Chen W, Hilhorst A, Bokas G, Gorsse S, Jacques PJ, Hautier G. A map of single-phase high-entropy alloys. Nature Communications. 2023;14(1):2856. 21. Feng R, Feng B, Gao MC, Zhang C, Neuefeind JC, Poplawsky JD, et al. Superior High-Temperature Strength in a Supersaturated Refractory High-Entropy Alloy. Advanced Materials. 2021;33(48):2102401. 22. Lee C, Kim G, Chou Y, Musicó BL, Gao MC, An K, et al. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy. Science Advances. 2020;6(37):eaaz4748. 23. Whitfield TE, Pickering EJ, Owen LR, Senkov ON, Miracle DB, Stone HJ, et al. An assessment of the thermal stability of refractory high entropy superalloys. J Alloys Compd. 2021;857:157583. 24. Gadelmeier C, Yang Y, Glatzel U, George EP. Creep strength of refractory high-entropy alloy TiZrHfNbTa and comparison with Ni-base superalloy CMSX-4. Cell Rep Phys Sci. 2022;3(8). 25. Zhai T guang, Wilkinson AJ, Martin JW. A crystallographic mechanism for fatigue crack propagation through grain boundaries. Acta Materialia. 2000;48(20):4917–27. 26. Zheng H, Zuo X, Wan J, Rong Y, Chen N. Intrinsic mechanism of grain size effect and grain boundary misorientation angle effect on crack propagation in martensitic steels. Engineering Failure Analysis. 2024;108497. 27. Zhao L, Xu L, Nikbin K. Predicting failure modes in creep and creep-fatigue crack growth using a random grain/grain boundary idealised microstructure meshing system. Materials Science and Engineering: A. 2017;704:274–86. 28. Cheng J, Hu X, Lach T, Chen XF. Crystal plasticity modeling and analysis for the transition from intergranular to transgranular failure in nickel-based alloy Inconel 740H at elevated temperature. Materials Science and Engineering: A. 2024;902:146622. 29. Liu CJ, Gadelmeier C, Lu SL, Yeh JW, Yen HW, Gorsse S, et al. Tensile creep behavior of HfNbTaTiZr refractory high entropy alloy at elevated temperatures. Acta Materialia. 2022;237:118188. 30. Sahragard-Monfared G, Belcher CH, Bajpai S, Wirth M, Devaraj A, Apelian D, et al. Tensile creep behavior of the Nb45Ta25Ti15Hf15 refractory high entropy alloy. Acta Materialia. 2024;272:119940. 31. Islam M, Sheriff K, Cao Y, Freitas R. Nonequilibrium chemical short-range order in metallic alloys. 2024. https://arxiv.org/abs/2409.15474 32. Sheriff K, Cao Y, Smidt T, Freitas R. Quantifying chemical short-range order in metallic alloys. Proceedings of the National Academy of Sciences. 2024;121(25):e2322962121. 33. Zhou X, Song H, Guo C, Yang Z, Tian F. Effect of short-range order on lattice distortion, stacking fault energy, and mechanical performance of Co-Fe-Ni-Ti high-entropy alloy at finite temperature. Physical Review Materials. 2024 May 15;8(5):53602. 34. Li L, Ouyang B, Lun Z, Huo H, Chen D, Yue Y, et al. Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes. Nature Communications. 2023;14(1):7448. 35. Seol JB, Ko WS, Sohn SS, Na MY, Chang HJ, Heo YU, et al. Mechanically derived short-range order and its impact on the multi-principal-element alloys. Nature Communications. 2022;13(1):6766. 36. Ding J, Yu Q, Asta M, Ritchie RO. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proceedings of the National Academy of Sciences. 2018;115(36):8919–24. 37. Cao P. How Does Short-Range Order Impact Defect Kinetics in Irradiated Multiprincipal Element Alloys? Accounts of Materials Research. 2021;2(2):71–4. 38. Darling KA, Rajagopalan M, Komarasamy M, Bhatia MA, Hornbuckle BC, Mishra RS, et al. Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature. 2016;537(7620):378–81. 39. You ZY, Tang ZY, Chu FB, Zhao L, Zhang HW, Cao DD, et al. Elevated-temperature creep properties and deformation mechanisms of a non-equiatomic FeMnCoCrAl high-entropy alloy. Journal of Materials Research and Technology. 2024;30:3822–30. 40. Connétable D, Maugis P. Effect of stress on vacancy formation and diffusion in fcc systems: Comparison between DFT calculations and elasticity theory. Acta Materialia. 2020;200:869–82. 41. Quek SS, Chooi ZH, Wu Z, Zhang YW, Srolovitz DJ. The inverse hall–petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis. Journal of the Mechanics and Physics of Solids. 2016;88:252–66. 42. Sundu K, Ottersberg R, Jaggi M, Löwe H. A grain-size driven transition in the deformation mechanism in slow snow compression. Acta Materialia. 2024;262:119359. 43. Shu X, Kong D, Lu Y, Long H, Sun S, Sha X, et al. Size effect on the deformation mechanisms of nanocrystalline platinum thin films. Scientific Reports. 2017;7(1):13264. 44. Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw PK. Mechanical behavior of high-entropy alloys. Prog Mater Sci. 2021;118:100777. 45. Mukherjee AK, Bird JE, Dorn JE. Experimental correlations for high-temperature creep. 1968; 46. McLean D. The physics of high temperature creep in metals. Reports on Progress in Physics. 1966 Jan 1;29(1):301. 47. Dobeš F, Milička K. Internal stress and activation energy of creep. Materials Science and Engineering: A. 2007 Jul 25;462(1–2):380–3. 48. Nie Kai and Wu WP and ZXL and YSM. Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel. Journal of Materials Science. 2017 Feb;52(4):2180–91. 49. Saha S, Motalab M. Nature of creep deformation in nanocrystalline Tungsten. Comput Mater Sci. 2018;149:360–72. 50. Scattergood RO. Mechanical metallurgy — Principles and applications: by M. A. Meyers and K. K. Chawla; published by Prentice-Hall, Englewood Cliffs, NJ, 1984; 762 pp.; price, £49.15. In 1985. 51. Blum W, Zeng XH. A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Materialia. 2009;57(6):1966–74. 52. Nie K, Wu WP, Zhang XL, Yang SM. Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel. Journal of Materials Science. 2017;52(4):2180–91. 53. Zhang XZ, Wu XJ, Liu R, Liu J, Yao MX. Deformation-mechanism-based modeling of creep behavior of modified 9Cr-1Mo steel. Materials Science and Engineering: A. 2017;689:345–52. 54. Cowley JM. An Approximate Theory of Order in Alloys. Phys Rev. 1950 Mar;77(5):669–75. 55. Zheng H, Li XG, Tran R, Chen C, Horton M, Winston D, et al. Grain boundary properties of elemental metals. Acta Materialia. 2020;186:40–9. 56. Xing B, Wang X, Bowman WJ, Cao P. Short-range order localizing diffusion in multi-principal element alloys. Scr Mater. 2022;210:114450. 57. Li XG, Chen C, Zheng H, Zuo Y, Ong SP. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy. NPJ Comput Mater. 2020;6(1):70. 58. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. 59. Schi\o{}tz J, Vegge T, Di Tolla FD, Jacobsen KW. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B. 1999 Nov;60(17):11971–83. 60. Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Comput Phys Commun. 2015;197:212–9. 61. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970 Apr 1;57(1):97–109. 62. Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mat Sci Eng. 2012 May;20(4):45021. 63. Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mat Sci Eng. 2010 Sep;18(8):85001. 64. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mat Sci Eng. 2009;18(1):15012.