Surgical Data Science and Associated Techniques Facilitate the Development of Contemporary Equipment like Apple's Vision Pro
- 1. Department of Data Science, Stevens Institute of Technology, Seattle, WA, (United States of America) USA.
Contributors
Contact person:
- 1. Department of Data Science, Stevens Institute of Technology, Seattle, WA, (United States of America) USA.
- 2. Stevens Institute of Technology, Philadelphia, PA, (United States of America) USA.
- 3. Department of Computer Science, University of North Carolina at Charlotte, Seattle, WA, (United States of America) USA.
- 4. Department of Computer Science, Stevens Institute of Technology, Texas, TX, (United States of America) USA.
- 5. Department of Civil Engineering, Syracuse University, Charlotte, (United States of America) USA.
Description
Abstract: Artificial Intelligence (AI) has revolutionized modern surgery by enhancing every stage of patient care, from preoperative planning to postoperative monitoring. This paper explores the impact of AI in conjunction with other technologies in surgical procedures, emphasizing their empirical basis and integration into clinical practice. AI's role in facilitating personalized treatment planning through a comprehensive analysis of patient data and imaging studies, utilizing techniques like natural language processing (NLP) to extract critical insights, reassures us of its positive impact on patient care. Real-time decision support systems powered by AI improve surgical precision, enabling surgeons to navigate complex procedures with enhanced accuracy and efficiency. Furthermore, AI-driven surgical robotics exemplify the precision achievable with these technologies, enabling minimally invasive procedures that minimize patient trauma and expedite recovery. Integrating AI with computer vision further enhances surgical capabilities by allowing machines to interpret visual data autonomously, like human perception. Convolutional Neural Networks (CNNs) are pivotal in image recognition and analysis, supporting tasks from anatomical landmark identification to surgical planning. Augmented Reality (AR), when combined with AI, enriches surgical practice by overlaying digital information onto real-world views, aiding in intraoperative guidance and educational training. Devices like Apple's Vision Pro (AVP) headset showcase the potential of mixed reality technologies in enhancing surgical precision. AVP's integration of spatial computing and AI algorithms allows for real-time data analysis and decision support, transforming surgical education and procedural outcomes. Despite the transformative potential, challenges, including ethical considerations, data privacy, and regulatory frameworks, must be addressed to ensure the responsible deployment of AI in surgical settings. These challenges include mitigating biases in AI algorithms and ensuring equitable access to advanced technologies across diverse surgical specialties. The dynamic nature of AI in surgery necessitates continued research and development to refine AI applications, optimize surgical workflows, and improve patient outcomes globally. In combination with contemporary technologies, AI represents a paradigm shift in surgical practice, offering unprecedented opportunities to enhance patient care through personalized, precise, and efficient interventions. AI's ongoing evolution and integration in surgery promise to reshape healthcare's future, advancing clinical practice and medical education toward safer, more effective, and inclusive healthcare delivery systems.
Files
D364814040924.pdf
Files
(513.2 kB)
Name | Size | Download all |
---|---|---|
md5:fb8932c78f5ef4a1e3d9e59540ea1208
|
513.2 kB | Preview Download |
Additional details
Identifiers
- DOI
- 10.54105/ijpmh.D3648.0501124
- EISSN
- 2582-7588
Dates
- Accepted
-
2024-11-15Manuscript received on 21 August 2024 | Revised Manuscript received on 02 November 2024 | Manuscript Accepted on 15 November 2024 | Manuscript published on 30 November 2024.
References
- Acidi, B., Ghallab, M., Cotin, S., Vibert, E., & Golse, N. (2023). Augmented reality in liver surgery. J Visc Surg, 160(2), 118-126. https://doi.org/10.1016/j.jviscsurg.2023.01.008
- Anwar, A., Zhang, Y., Zhang, Z., & Li, J. (2024). Artificial intelligence technology improves the accuracy of preoperative planning in primary total hip arthroplasty. Asian J Surg, 47(7), 2999-3006. https://doi.org/10.1016/j.asjsur.2024.01.133
- Armstrong, D. G., Bazikian, S., Armstrong, A. A., Clerici, G., Casini, A., & Pillai, A. (2024). An Augmented Vision of Our Medical and Surgical Future, Today? J Diabetes Sci Technol, 18(4), 968-973. https://doi.org/10.1177/19322968241236458
- Bektas, M., Burchell, G. L., Bonjer, H. J., & van der Peet, D. L. (2023). Machine learning applications in upper gastrointestinal cancer surgery: a systematic review. Surg Endosc, 37(1), 75-89. https://doi.org/10.1007/s00464-022-09516-z
- Brockmeyer, P., Wiechens, B., & Schliephake, H. (2023). The Role of Augmented Reality in the Advancement of Minimally Invasive Surgery Procedures: A Scoping Review. Bioengineering (Basel), 10(4). https://doi.org/10.3390/bioengineering10040501
- Chan, H. P., Samala, R. K., Hadjiiski, L. M., & Zhou, C. (2020). Deep Learning in Medical Image Analysis. Adv Exp Med Biol, 1213, 3-21. https://doi.org/10.1007/978-3-030-33128-3_1
- Charles, Y. P., Lamas, V., & Ntilikina, Y. (2023). Artificial intelligence and treatment algorithms in spine surgery. Orthop Traumatol Surg Res, 109(1S), 103456. https://doi.org/10.1016/j.otsr.2022.103456
- Chen, H. (2023). Application progress of artificial intelligence and augmented reality in orthopaedic arthroscopy surgery. J Orthop Surg Res, 18(1), 775. https://doi.org/10.1186/s13018-023-04280-9
- Chen, P. C., Gadepalli, K., MacDonald, R., Liu, Y., Kadowaki, S., Nagpal, K., Kohlberger, T., Dean, J., Corrado, G. S., Hipp, J. D., Mermel, C. H., & Stumpe, M. C. (2019). An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat Med, 25(9), 1453-1457. https://doi.org/10.1038/s41591- 019-0539-7
- Condino, S., Montemurro, N., Cattari, N., D'Amato, R., Thomale, U., Ferrari, V., & Cutolo, F. (2021). Evaluation of a Wearable AR Platform for Guiding Complex Craniotomies in Neurosurgery. Ann Biomed Eng, 49(9), 2590-2605. https://doi.org/10.1007/s10439-021-02834-8
- Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nat Med, 25(1), 24-29. https://doi.org/10.1038/s41591-018-0316-z
- Guerrero, D. T., Asaad, M., Rajesh, A., Hassan, A., & Butler, C. E. (2023). Advancing Surgical Education: The Use of Artificial Intelligence in Surgical Training. Am Surg, 89(1), 49-54. https://doi.org/10.1177/00031348221101503
- Guni, A., Varma, P., Zhang, J., Fehervari, M., & Ashrafian, H. (2024). Artificial Intelligence in Surgery: The Future is Now. Eur Surg Res. https://doi.org/10.1159/000536393
- Hirides, S., Hirides, H., Kalliopi, K., & Hirides, C. (2024). Artificial Intelligence and computer vision during surgery: discussing laparoscopic images with ChatGPT4 - Preliminary results. Surgical Science, 15, 169-181. https://doi.org/10.4236/ss.2024.153017
- Le, K. D. R., Tay, S. B. P., Choy, K. T., Verjans, J., Sasanelli, N., & Kong, J. C. H. (2024). Applications of natural language processing tools in the surgical journey. Front Surg, 11, 1403540. https://doi.org/10.3389/fsurg.2024.1403540
- Madani, A., Liu, Y., Pryor, A., Altieri, M., Hashimoto, D. A., & Feldman, L. (2024). SAGES surgical data science task force: enhancing surgical innovation, education and quality improvement through data science. Surg Endosc, 38(7), 3489-3493. https://doi.org/10.1007/s00464-024- 10921-9
- Maier-Hein, L., Vedula, S. S., Speidel, S., Navab, N., Kikinis, R., Park, A., Eisenmann, M., Feussner, H., Forestier, G., Giannarou, S., Hashizume, M., Katic, D., Kenngott, H., Kranzfelder, M., Malpani, A., Marz, K., Neumuth, T., Padoy, N., Pugh, C., . . . Jannin, P. (2017). Surgical data science for next-generation interventions. Nat Biomed Eng, 1(9), 691-696. https://doi.org/10.1038/s41551-017-0132-7
- Masalkhi, M., Waisberg, E., Ong, J., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2023). Apple Vision Pro for Ophthalmology and Medicine. Ann Biomed Eng, 51(12), 2643-2646. https://doi.org/10.1007/s10439-023-03283-1
- Sonika Koganti, Advaitha Naidu Chintakunta, Vinoth Kumar Kolluru, Yudhisthir Nuthakki, Sudeep Mungara, Exploring Consumer Behaviors in E-Commerce Using Machine Learning, International Journal of Data Analytics Research and Development (IJDARD), 1(1), 2023, pp. 51–63. https://iaeme.com/Home/issue/IJDARD?Volume=1&Issue=1
- Mascagni, P., Alapatt, D., Sestini, L., Altieri, M. S., Madani, A., Watanabe, Y., Alseidi, A., Redan, J. A., Alfieri, S., Costamagna, G., Boskoski, I., Padoy, N., & Hashimoto, D. A. (2022). Computer vision in surgery: from potential to clinical value. NPJ Digit Med, 5(1), 163. https://doi.org/10.1038/s41746-022-00707-5
- McFarlane, M. (2020). Artificial intelligence: The new frontier in surgery. European Journal of Medical and Health Sciences, 2(4). https://doi.org/10.24018/ejmed.2020.2.4.401
- Mohaideen, K., Negi, A., Verma, D. K., Kumar, N., Sennimalai, K., & Negi, A. (2022). Applications of artificial intelligence and machine learning in orthognathic surgery: A scoping review. J Stomatol Oral Maxillofac Surg, 123(6), e962-e972. https://doi.org/10.1016/j.jormas.2022.06.027
- Olexa, J., Kim, K. T., Saadon, J. R., Rakovec, M., Evans, M., Cohen, J., & Cherian, J. (2004). Apple Vision Pro Augmented Reality-Assisted Minimally Invasive Surgical Treatment of Spinal Dural Arteriovenous Fistula. Cureus, 16(7). https://doi.org/0.7759/cureus.63657
- Olexa, J., Trang, A., Cohen, J., Kim, K., Rakovec, M., Saadon, J., Sansur, C., Woodworth, G., Schwartzbauer, G., & Cherian, J. (2024). The Apple Vision Pro as a Neurosurgical Planning Tool: A Case Report. Cureus, 16(2), e54205. https://doi.org/10.7759/cureus.54205
- Sánchez-Martínez, D., Padilla-Rojas, J., & Diaz-Chaker, W. (2024). How can Apple Vision Pro contribute to plastic surgery? Revista Española de Educación Médica, 2. https:// https://doi.org/10,6018/edumed/606141
- Kolluru, V., Mungara, S., & Chintakunta, A. N. (2018). Adaptive learning systems: Harnessing AI for customized educational experiences. International Journal of Computational Science and Information Technology (IJCSITY), 6(1/2/3), August 2018. DOI: https://doi.org/10.5121/ijcsity.2018.6302
- Syed, T. A., Siddiqui, M. S., Abdullah, H. B., Jan, S., Namoun, A., Alzahrani, A., Nadeem, A., & Alkhodre, A. B. (2022). In-Depth Review of Augmented Reality: Tracking Technologies, Development Tools, AR Displays, Collaborative AR, and Security Concerns. Sensors (Basel), 23(1). https://doi.org/10.3390/s23010146
- Waisberg, E., Ong, J., Masalkhi, M., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2024a). Apple Vision Pro and the advancement of medical education with extended reality. Can Med Educ J, 15(1), 89-90. https://doi.org/10.36834/cmej.77634
- Waisberg, E., Ong, J., Masalkhi, M., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2024b). The future of ophthalmology and vision science with the Apple Vision Pro. Eye (Lond), 38(2), 242-243. https://doi.org/10.1038/s41433-023-02688-5
- Wei, N. J., Dougherty, B., Myers, A., & Badawy, S. M. (2018). Using Google Glass in Surgical Settings: Systematic Review. JMIR Mhealth Uhealth, 6(3), e54. https://doi.org/10.2196/mhealth.9409
- Kolluru, V., Mungara, S., & Chintakunta, A. N. (2019). Securing the IoT ecosystem: Challenges and innovations in smart device cybersecurity. International Journal on Cryptography and Information Security (IJCIS), 9(1/2), 37. https://doi.org/10.5121/ijcis.2019.9203
- Williams, M. A., McVeigh, J., Handa, A. I., & Lee, R. (2020). Augmented reality in surgical training: a systematic review. Postgrad Med J, 96(1139), 537-542. https://doi.org/10.1136/postgradmedj-2020- 137600
- Zhang, C., Hallbeck, M. S., Salehinejad, H., & Thiels, C. (2024). The integration of artificial intelligence in robotic surgery: A narrative review. Surgery. https://doi.org/10.1016/j.surg.2024.02.005
- Kolluru, V., Mungara, S., & Chintakunta, A. N. (2020). Combating misinformation with machine learning: Tools for trustworthy news consumption. Machine Learning and Applications: An International Journal (MLAIJ), 7(3/4), 28. DOI: https://doi.org/10.5121/mlaij.2020.7403
- M, S., & S, G. (2019). Identification and Classification of Cataract Stages in Old Age People Using Deep Learning Algorithm. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 10, pp. 2767–2772). https://doi.org/10.35940/ijitee.j9582.0881019
- Nithya, K. N., & Suresh, P. (2019). Diagnosis of Vertebral Column Disorders using A Novel Sprint Algorithm. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 3, pp. 8920– 8924). https://doi.org/10.35940/ijrte.c5630.098319
- Sharma, P., & Site, S. (2022). A Comprehensive Study on Different Machine Learning Techniques to Predict Heart Disease. In Indian Journal of Artificial Intelligence and Neural Networking (Vol. 2, Issue 3, pp. 1–7). https://doi.org/10.54105/ijainn.c1046.042322
- Sutabri, T., Selvam, R. P., Shankar, K., Nguyen, P. T., Hashim, W., & Maseleno, A. (2019). Machine Learning for Healthcare Diagnostics. In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 6s2, pp. 999–1001). https://doi.org/10.35940/ijeat.f1304.0886s219
- Khan, N. D., Younas, M., Khan, M. T., Duaa, & Zaman, A. (2021). The Role of Big Data Analytics in Healthcare. In International Journal of Soft Computing and Engineering (Vol. 11, Issue 1, pp. 1–7). https://doi.org/10.35940/ijsce.a3523.0911121