Annotated Cows in Aerial Images - Test Set for Livestock Detection Models
Description
This dataset contains a test set of aerial images from fields in Juchowo, Poland and Wageningen, the Netherlands, with annotated cows. The annotations are provided in a CSV format containing image file paths, bounding box coordinates (xmin
, ymin
, xmax
, ymax
), and labels for the objects (cows). The dataset is intended for evaluating livestock detection models in deep learning, particularly DeepForest.
The images and their corresponding bounding box annotations are included in this archive. The test set consists of 10% of the total images, split from the original dataset created by G.J. Franke and Sander Mucher, which is available in [Harvard Dataverse](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/N7GJYU). This dataset is part of the GenTORE project (https://www.gentore.eu), focusing on precision livestock farming using automated detection and deep learning techniques.
Contributions
Notebook
-
Alejandro Coca-Castro (author), The Alan Turing Institute, @acocac
Dataset reference and documentation
-
Franke, G.J., & Mucher, S. (2021). Annotated cows in aerial images for use in deep learning models. Harvard Dataverse. https://doi.org/10.7910/DVN/N7GJYU
Files
20181001 (196).JPG
Files
(7.1 GB)
Name | Size | Download all |
---|---|---|
md5:d84d3487b4fea5a769b754fcd7655527
|
5.2 MB | Preview Download |
md5:7655b477efe8fcf988f752c778ad82e2
|
5.7 MB | Preview Download |
md5:6cedf6881250de9d6eeeabb65f245588
|
5.2 MB | Preview Download |
md5:5e08693507ee11a00aa12ba86cd6e0b2
|
5.8 MB | Preview Download |
md5:2bf80472f30832d151784776f3b9aadf
|
6.2 MB | Preview Download |
md5:cab7a872990ec6d6a8dc76eda9bde511
|
5.7 MB | Preview Download |
md5:793358e2c3c59a3a621ff66b31533996
|
140.7 kB | Preview Download |
md5:90a37ff7c1a166f671dac952cfae2708
|
7.1 GB | Preview Download |
md5:9b1fcc44aec7a678e736366b307f27f8
|
14.8 kB | Preview Download |
md5:95325651118ebf92ec440c440175848c
|
21.3 kB | Preview Download |
md5:5ef15e75fe4e2d990ac197278a5677e8
|
27.0 kB | Preview Download |
md5:7ffe4e76aed412702b85ce14599ec953
|
97.4 kB | Preview Download |
md5:270d09c730701420ed4c3e93ca68e694
|
28.5 kB | Preview Download |