Published November 24, 2024 | Version v4
Dataset Open

Annotated Cows in Aerial Images - Test Set for Livestock Detection Models

  • 1. ROR icon Queen Mary University of London

Description

This dataset contains a test set of aerial images from fields in Juchowo, Poland and Wageningen, the Netherlands, with annotated cows. The annotations are provided in a CSV format containing image file paths, bounding box coordinates (xmin, ymin, xmax, ymax), and labels for the objects (cows). The dataset is intended for evaluating livestock detection models in deep learning, particularly DeepForest.

The images and their corresponding bounding box annotations are included in this archive. The test set consists of 10% of the total images, split from the original dataset created by G.J. Franke and Sander Mucher, which is available in [Harvard Dataverse](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/N7GJYU). This dataset is part of the GenTORE project (https://www.gentore.eu), focusing on precision livestock farming using automated detection and deep learning techniques.

Contributions

Notebook

  • Alejandro Coca-Castro (author), The Alan Turing Institute, @acocac

Dataset reference and documentation

Files

20181001 (196).JPG

Files (7.1 GB)

Name Size Download all
md5:d84d3487b4fea5a769b754fcd7655527
5.2 MB Preview Download
md5:7655b477efe8fcf988f752c778ad82e2
5.7 MB Preview Download
md5:6cedf6881250de9d6eeeabb65f245588
5.2 MB Preview Download
md5:5e08693507ee11a00aa12ba86cd6e0b2
5.8 MB Preview Download
md5:2bf80472f30832d151784776f3b9aadf
6.2 MB Preview Download
md5:cab7a872990ec6d6a8dc76eda9bde511
5.7 MB Preview Download
md5:793358e2c3c59a3a621ff66b31533996
140.7 kB Preview Download
md5:90a37ff7c1a166f671dac952cfae2708
7.1 GB Preview Download
md5:9b1fcc44aec7a678e736366b307f27f8
14.8 kB Preview Download
md5:95325651118ebf92ec440c440175848c
21.3 kB Preview Download
md5:5ef15e75fe4e2d990ac197278a5677e8
27.0 kB Preview Download
md5:7ffe4e76aed412702b85ce14599ec953
97.4 kB Preview Download
md5:270d09c730701420ed4c3e93ca68e694
28.5 kB Preview Download