Published February 9, 2024 | Version v1
Journal article Open

High-Bandgap Perovskites for Efficient Indoor LightHarvesting

  • 1. ROR icon Forschungszentrum Jülich
  • 2. Forschungszentrum Jülich Institut für Energie- und Klimaforschung

Description

The use of metal-halide perovskites in photovoltaic applications has becomeincreasingly attractive due to their low-temperature manufacturing processes andlong charge-carrier lifetimes. High-bandgap perovskite solar cells have potentialfor indoor applications due to their efficient absorption of the spectrum of light-emitting diodes (LEDs). This study investigates the performance of high-bandgapperovskite solar cells under a wide range of lighting conditions, including acommercially available white LED lamp with a 5–40 000 lx illuminance range anda standard 1 sun reference. The performance of CH3 NH 3PbI 3-based perovskitesolar cells to CH3 NH 3Pb(I 0.8,Br 0.2) 3 solar cells with varying electron transportlayers (ETL), including PCBM, PCBM:CMC, and CMC:ICBA fullerene combina-tions, is compared. Because the spectral response of perovskite solar cells coversthe white LED spectrum very well, the major performance difference is related tothe open-circuit voltage and fill factor. The cells with the CH3NH3Pb(I 0.8,Br0.2) 3absorber layer and the CMC:ICBA ETL demonstrate superior open-circuit voltageand therefore a high efficiency above 29% at 200–500 lx, typical for indoorlighting.

Files

Adv Energy and Sustain Res - 2024 - Shcherbachenko - High‐Bandgap Perovskites for Efficient Indoor Light Harvesting.pdf

Additional details

Funding

European Commission
SUPERVAL - SUstainable Photo-ElectRochemical VALorization of flue gases 101115456

References

  • [1] Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok,M. D. McGehee, E. H. Sargent, H. Han, Science 2018, 361, eaat8235.[2] L. Krückemeier, B. Krogmeier, Z. Liu, U. Rau, T. Kirchartz, Adv. EnergyMater. 2021, 11, 2003489.[3] D. W. deQuilettes, S. Koch, S. Burke, R. K. Paranji, A. J. Shropshire,M. E. Ziffer, D. S. Ginger, ACS Energy Lett. 2016, 1, 438.[4] W. Tress, Adv. Energy Mater. 2017, 7, 1602358.[5] A. K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 2019, 119, 3036.[6] O. Almora, D. Baran, G. C. Bazan, C. Berger, C. I. Cabrera,K. R. Catchpole, S. Erten-Ela, F. Guo, J. Hauch, A. W. Y. Ho-Baillie, T. J. Jacobsson, R. A. J. Janssen, T. Kirchartz, N. Kopidakis,Y. Li, M. A. Loi, R. R. Lunt, X. Mathew, M. D. McGehee, J. Min,D. B. Mitzi, M. K. Nazeeruddin, J. Nelson, A. F. Nogueira,U. W. Paetzold, N.-G. Park, B. P. , U. Rau, H. J. Snaith, E. Unger,et al. Adv. Energy Mater. 2021, 11, 2102526.[7] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith,Science 2012, 338, 643.[8] W. Shockley, H. J. Queisser, J. Appl. Phys 1961, 32, 510.[9] L. Krückemeier, U. Rau, M. Stolterfoht, T. Kirchartz, Adv. EnergyMater. 2020, 10, 1902573.[10] K. O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel,T. Gahlmann, M. Theisen, T. Haeger, S. Olthof, C. Tückmantel,M. Günster, T. Maschwitz, F. Göbelsmann, C. Koch, D. Hertel,P. Caprioglio, F. Pe˜na-Camargo, L. Perdigón-Toro, A. Al-Ashouri,L. Merten, A. Hinderhofer, L. Gomell, S. Zhang, F. Schreiber,S. Albrecht, K. Meerholz, D. Neher, M. Stolterfoht, T. Riedl,Nature 2022, 604, 280.[11] A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel,P. Caprioglio, J. A. Márquez, A. B. Morales Vilches,E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek,L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt,G. Matiˇc, B. Rech, R. Schlatmann, M. Topiˇc, L. Korte, A. Abate,B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis,S. Albrecht, Science 2020, 370, 1300.[12] M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Adv. Energy Mater. 2020,10, 1904102.[13] X. He, J. Chen, X. Ren, L. Zhang, Y. Liu, J. Feng, J. Fang, K. Zhao,S. Liu, Adv. Mater. 2021, 33, 2100770.[14] D. Lübke, P. Hartnagel, J. Angona, T. Kirchartz, Adv. Energy Mater.2021, 11, 2101474.[15] O. Almora, D. Baran, G. C. Bazan, C. I. Cabrera, S. Erten-Ela,K. Forberich, F. Guo, J. Hauch, A. W. Y. Ho-Baillie,T. J. Jacobsson, R. A. J. Janssen, T. Kirchartz, N. Kopidakis,M. A. Loi, R. R. Lunt, X. Mathew, M. D. McGehee, J. Min,D. B. Mitzi, M. K. Nazeeruddin, J. Nelson, A. F. Nogueira,U. W. Paetzold, B. P. U. Rau, H. J. Snaith, E. Unger, L. Vaillant-Roca, C. Yang, H.-L. Yip, et al. Adv. Energy Mater. 2023, 13, 2203313.[16] E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring,H. I. Karunadasa, M. D. McGehee, Chem. Sci. 2015, 6, 613.[17] E. L. Unger, L. Kegelmann, K. Suchan, D. Sorell, L. Korte, S. Albrecht,J. Mater. Chem. A 2017, 5, 11401.[18] S. Mahesh, J. M. Ball, R. D. Oliver, D. P. McMeekin, P. K. Nayak,M. B. Johnston, H. J. Snaith, Energy Environ. Sci. 2020, 13, 258.[19] Z. Liu, J. Siekmann, B. Klingebiel, U. Rau, T. Kirchartz, Adv. EnergyMater. 2021, 11, 2003386.[20] J. Tian, K. Zhang, Z. Xie, Z. Peng, J. Zhang, A. Osvet, L. Lüer,T. Kirchartz, U. Rau, N. Li, C. J. Brabec, ACS Energy Lett. 2022, 7, 4071.[21] H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen, T. Zhu, E. Ugur,G. Harrison, L. Grater, J. Wang, Z. Wang, L. Zeng, S. M. Park,L. Chen, P. Serles, R. A. Awni, B. Subedi, X. Zheng, C. Xiao,N. J. Podraza, T. Filleter, C. Liu, Y. Yang, J. M. Luther, S. De Wolf,M. G. Kanatzidis, Y. Yan, E. H. Sargent, Nature 2022, 613, 676.[22] M. Stolterfoht, P. Caprioglio, C. M. Wolff, J. A. Márquez,J. Nordmann, S. Zhang, D. Rothhardt, U. Hörmann, Y. Amir,A. Redinger, Energy Environ. Sci. 2019, 12, 2778.[23] S. N. Agbo, T. Merdzhanova, U. Rau, O. Astakhov, Sol. Energy Mater.Sol. Cells 2017, 159, 427.[24] F. Khan, S. N. Singh, M. Husain, Sol. Energy Mater. Sol. Cells 2010,94, 1473.[25] N. H. Reich, W. G. J. H. M. van Sark, E. A. Alsema, R. W. Lof,R. E. I. Schropp, W. C. Sinke, W. C. Turkenburg, Sol. Energy Mater.Sol. Cells 2009, 93, 1471.[26] J. Merten, J. M. Asensi, C. Voz, A. V. Shah, R. Platz, J. Andreu, IEEETrans. Electron Devices 1998, 45, 423.[27] G. Burwell, O. J. Sandberg, W. Li, P. Meredith, M. Carnie, A. Armin,Sol. RRL 2022, 6, 2200315.[28] R. Arai, S. Furukawa, Y. Hidaka, H. Komiyama, T. Yasuda, ACS Appl.Mater. Interfaces 2019, 11, 9259.[29] R. Cheng, C.-C. Chung, H. Zhang, F. Liu, W.-T. Wang, Z. Zhou,S. Wang, A. B. Djuriši´c, S.-P. Feng, Adv. Energy Mater. 2019, 9, 1901980.[30] J. Dagar, S. Castro-Hermosa, G. Lucarelli, F. Cacialli, T. M. Brown,Nano Energy 2018, 49, 290.[31] C.-Y. Chen, J.-H. Chang, K.-M. Chiang, H.-L. Lin, S.-Y. Hsiao, H.-W. Lin, Adv. Funct. Mater. 2015, 25, 7064.[32] L.-C. Kin, Z. Liu, O. Astakhov, S. Shcherbachenko, H. Kungl, T. Kirchartz,R.-A. Eichel, U. Rau, T. Merdzhanova, Cell Rep. Phys. Sci. 2022, 3, 101123.[33] V. Bahrami-Yekta, T. Tiedje, Opt. Express 2018, 26, 28238.[34] Z. Liu, L. Krückemeier, B. Krogmeier, B. Klingebiel, J. A. Márquez,S. Levcenko, S. Öz, S. Mathur, U. Rau, T. Unold, T. Kirchartz, ACSEnergy Lett. 2019, 4, 110.[35] M. A. Faist, S. Shoaee, S. M. Tuladhar, G. F. A. Dibb, S. Foster,W. Gong, T. Kirchartz, D. D. C. Bradley, J. R. Durrant, J. Nelson,Adv. Energy Mater. 2013, 3, 744.[36] M. A. Faist, T. Kirchartz, W. Gong, R. S. Ashraf, I. McCulloch, J. C. deMello, N. J. Ekins-Daukes, D. D. C. Bradley, J. Nelson, J. Am. Chem.Soc. 2012, 134, 685.[37] L. Krückemeier, Z. Liu, B. Krogmeier, U. Rau, T. Kirchartz, Adv. EnergyMater. 2021, 11, 2102290.[38] M. A. Green, U. O. N. S. Wales, Solar Cells: Operating Principles,Technology and System Applications, University of New SouthWales, Australia 1986.www.advancedsciencenews.com www.advenergysustres.comAdv. Energy Sustainability Res. 2024, 5, 2400032 2400032 (7 of 8) © 2024 The Authors. Advanced Energy and Sustainability Researchpublished by Wiley-VCH GmbH[39] S. Hegedus, A. Luque, Handbook of Photovoltaic Science andEngineering, Wiley, USA 2011.[40] M. A. Green, Sol. Cells 1982, 7, 337.[41] S. Agbo, T. Merdzhanova, U. Rau, O. Astakhov, Sol. Energy Mater. Sol.Cells 2017, 159, 427.[42] J. Merten, J. Asensi, C. Voz, A. Shah, R. Platz, J. Andreu, IEEE Trans.Electron Devices 1998, 45, 423.[43] L. C. Hirst, N. J. Ekins-Daukes, Prog. Photovoltaics 2011, 19, 286.[44] D. Grabowski, Z. Liu, G. Schöpe, U. Rau, T. Kirchartz, Sol. RRL 2022,6, 2200507.[45] D. Lübke, P. Hartnagel, M. Hülsbeck, T. Kirchartz, ACS Mater. Au2023, 3, 215.[46] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura,T. Nishiwaki, K. Fujita, E. Maruyama, IEEE J. Photovoltaics 2014, 4, 96.[47] S. K. Thomas, A. Pockett, K. Seunarine, M. Spence, D. Raptis,S. Meroni, T. Watson, M. Jones, M. J. Carnie, IoT 2022, 3, 109.[48] X. Deng, X. Wen, J. Zheng, T. Young, C. F. J. Lau, J. Kim, M. Green,S. Huang, A. Ho-Baillie, Nano Energy 2018, 46, 356.[49] S. Shao, M. Abdu-Aguye, L. Qiu, L.-H. Lai, J. Liu, S. Adjokatse, F. Jahani,M. E. Kamminga, H. Gert, T. T. Palstra, Energy Environ. Sci. 2016, 9, 2444.