Published June 7, 2018 | Version v1
Journal article Open

Clay surface characteristics using atomic force microscopy

  • 1. Universidad Francisco de Paula Santander

Contributors

Description

The first component for the manufacture of masonry products used in construction
is clay, which provides the plasticity that facilitates the molding and handling of the product.
The second component is the feldspar in form of alumina (Al2O3) which is used as flux.
The third one is silica (SiO2) which is used as a filling material and stabilizer. These
elements are determined by chemical composition using fluorescence analysis or X-ray
diffraction, which is the basis of the modern classification of minerals. Thereby, the main
objective of this research is to study the surface characteristics of clay samples from an
industrial company producing H-10 blocks in the region of Norte de Santander, by studying
the surfaces of the samples selected through the analysis by Atomic Force Microscopy, in
order to compare the results with those found in the literature, and at the same time taking
into account the chemical elements in their highest composition. The results show that this
is a technique that allows the identification of clay components, thus validating what has
been found in physical and chemical analysis, expecting to provide a scientific contribution
by AFM, because there is little information related to the characterization topography of clay
materials.

Files

3.pdf

Files (2.5 MB)

Name Size Download all
md5:2523af83270e60fe00316e699c5ee97b
2.5 MB Preview Download

Additional details

References

  • [1] O. Sahin, S. Magonov, C. Su, C. F. Quate, and O. Solgaard, "An atomic force microscope tip designed to measure time-varying nanomechanical forces," Nature Nanotechnology, vol. 2, no. 8, pp. 507–514, Jul. 2007.
  • [2] E. A. López and S. D. Solares, "El microscopio de fuerza atómica: métodos y aplicaciones," Revista de la Universidad del Valle Guatemala, vol. 28, no. 1, pp. 14–28, 2014.
  • [3] (2012) Atomic force microscopy. University of Rochester. Accessed Apr. 24, 2017. [Online]. Available: www.optics.rochester.edu/workgroups/cml/opt307/spr12/nilotpal/ HTMLfiles/AFM.htm
  • [4] V. Ivanov, J. Chu, V. Stabnikov, and B. Li, "Estrengthening of soft marine clay using bioencapsulation," Journal Marine Georesources & Geotechnology, vol. 33, no. 4, pp. 320–324, Jan. 2015.
  • [5] S. Pineda, Z. J. Han, and K. Ostrikov, "Plasma-enabled carbon nanostructures for early diagnosis of neurodegenerative diseases," Materials, vol. 7, no. 7, pp. 4896–4929, Jun. 2014.
  • [6] L. Vázquez. Afm (atomic force microscope). [Online]. Available: www.icmm.csic.es/fis/espa/afm.html
  • [7] N. S. et al., "Characterization of nanoreinforcement dispersion in inorganic nanocomposites: A review," Materials, vol. 7, no. 6, pp. 4148–4181, May 2014
  • [8] S. E. et al., "Manipulation of the catalyst-support interactions for inducing nanotube forest growth," J. Appl. Phys., vol. 109, no. 4, pp. 044 303.1–044 303.7, Feb. 2011.
  • [9] Y. Kobayashi, V. Salgueiriño, and L. M. Liz, "Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating," Chemistry of Materials, vol. 13, no. 5, pp. 1630–1633, Apr. 2001.
  • [10] L. B. Monroy, J. J. Olaya, M. Rivera, A. Ortiz, and G. Santana, "Growth study of y-ba-cu-o on buffer layers and different substrates made by ultrasonic spray pyrolysis," Rev. Latinoam. Metal. y Mater., vol. 32, no. 1, pp. 21–29, Jan. 2012.
  • [11] K. Kim, B. A. Lee, X. H. Piao, H. J. Chung, and Y. J. Kim, "Surface characteristics and bioactivity of an anodized titanium surface," J. Periodontal Implant Sci., vol. 43, no. 4, pp. 198–205, Aug. 2012
  • [12] X. W. T. et al., "In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt," Br. J. Ophthalmol., vol. 96, pp. 1252–1258, Sep. 2012.
  • [13] T. Öhlund, J. Örtegren, S. Forsberg, and H. E. Nilsson, "Paper surfaces for metal nanoparticle inkjet printing," Appl. Surf. Sci., vol. 259, pp. 731–739, Oct. 2012.
  • [14] P. Henrique, C. Camargo, K. G. Satyanarayana, and F. Wypych, "Nanocomposites: Synthesis, structure, properties and new application opportunities," Mater. Res., vol. 12, no. 1, pp. 1–39, Jan. 2009.
  • [15] M. R. Belkhedkar, A. U. Ubale, Y. S. Sakhare, N. Zubair, and M. Musaddique, "Characterization and antibacterial activity of nanocrystalline mn doped fe2o3 thin films grown by successive ionic layer adsorption and reaction method," J. Assoc. Arab Univ. Basic Appl. Sci, vol. 21, pp. 38–44, Oct. 2016.
  • [16] P. Lu and Y. L. Hsieh, "Highly pure amorphous silica nano-disks from rice straw," JPowder Technol., vol. 225, pp. 149–155, Oct. 2012.
  • [17] D. A. C. Brownson, D. K. Kampouris, and C. E. Banks, "Graphene electrochemistry: Fundamental concepts through to prominent applications," Chemical Society Reviews, vol. 41, no. 21, pp. 6944–6976, Nov. 2012.
  • [18] B. R. B. et al. (1999, Dec. 9) Atomic force microscopy study of clay mineral dissolution atomic force. [Online]. Available: https://vtechworks.lib.vt.edu/bitstream/handle/10919/ 25984/Bickmorebrb_diss.pdf?sequence=3.
  • [19] M. Prasad, M. Kopycinska, U. Rabe, and W. Arnold, "Measurement of young's modulus of clay minerals using atomic force acoustic microscopy," Geophys. Res. Lett., vol. 29, no. 8, pp. 13.1–13.4, Apr. 2002.
  • [20] V. Gupta, M. A. Hampton, A. V. Nguyen, and J. D. Miller, "Crystal lattice imaging of the silica and alumina faces of kaolinite using atomic force microscopy," J. Colloid Interface Sci., vol. 352, no. 1, pp. 75–80, Dec. 2010.
  • [21] R. A. García and R. Bolívar, "Caracterización hidrométrica de las arcillas utilizadas en la fabricación de productos cerámicos en ocaña, norte de santander," INGE CUC, vol. 13, no. 1, pp. 47–56, 2017
  • [22] R. A. García, R. Bolívar, and E. N. Flórez, "Validación de las propiedades físico-mecánicas de bloques h-10 fabricados en ocaña norte de santander y la región," Ingenio UFPSO, vol. 10, no. 1, pp. 17–26, 2016.
  • [23] F. D. B. de Sousa and C. H. Scuracchio, "The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers," Polímeros, vol. 24, no. 6, pp. 661–672, Nov. 2014.
  • [24] X. Zhang, H. Yi, Y. Zhao, and S. Song, "Quantitative determination of isomorphous substitutions on clay mineral surfaces through afm imaging: A case of mica," Colloids Surfaces A Physicochem. Eng. Asp, vol. 533, pp. 55–60, Nov. 2017.
  • [25] M. Brigatti, E. Galán, and B. K. G. Theng, "Chapter 2 structures and mineralogy of clay minerals," vol. 1, pp. 19–86, Dec 2006.
  • [26] V. Gélinas and D. Vidal, "Determination of particle shape distribution of clay using an automated afm image analysis method," Powder Technol., vol. 203, no. 2, pp. 254–264, Nov. 2010.
  • [27] R. A. Schoonheydt, "Reflections on the material science of clay minerals," Appl. Clay Sci., vol. 131, pp. 107–112, Oct. 2015.
  • [28] M. B. Roquet, "Mineralogía de la pegmatita casa de piedra, grupo pegmatítico villa praga - las lagunas, subgrupo potrerillos, san luis, argentina," in 11° Congreso de mineralogía y metalogenia, San Luis, Argentina, 2013, pp. 133–138.
  • [29] S. M. Rozo, J. Sánchez, and J. F. Gelves, "Evaluación de minerales alumino silicatos de norte de santander para fabricar piezas cerámicas de gran formato," Rev. Fac. Ing., vol. 24, no. 38, pp. 53–61, 2015.
  • [30] N. J. Perales and M. Barrera, "Análisis estructural por drx de una arcilla natural colombiana modificada por pilarización," Rev. Invest. Univ. Quindío., vol. 24, no. 1, pp. 100–106, 2013.
  • [31] E. Ramos, J. J. Guzmán, M. C. Sandoval, and Y. Gallaga, "Caracterización de arcillas del estado de guanajuato y su potencial aplicación en cerámica," Acta Univ., vol. 12, no. 1, pp. 23–30, 2002
  • [32] N. M. P. D. et al., "Morphological characterization of soil clay fraction in nanometric scale," Powder Technol., vol. 241, pp. 36–42, Jun. 2013.
  • [33] A. Sachan, "Use of atomic force microscopy (afm) of microfabric study of cohesive soils," J. Microsc., vol. 232, no. 3, pp. 422–431, Nov. 2008.
  • [34] L. F. Vesga, "Equivalent effective stress and compressibility of unsaturated kaolinite clay subjected to drying," J. Geotech. Geoenvironmental Eng., vol. 134, no. 3, pp. 366–378, Mar. 2008.
  • [35] C. M. F. Vieira, R. Sánchez, and S. N. Monteiro, "Characteristics of clays and properties of building ceramics in the state of rio de janeiro, brazil," Constr. Build. Mater., vol. 22, no. 5, pp. 781–787, May 2008.
  • [36] J. D. Santos, P. Y. Malagón, and E. M. Cordoba, "Caracterización de arcillas y preparación de pastas cerámicas para la fabricación de tejas y ladrillos en la región de barichara, santander," DYNA, vol. 78, no. 167, pp. 50–58, Jul. 2011.
  • [37] C. M. Ríos, "Uso de materias primas colombianas para el desarrollo de baldosa cerámicas con alto grado de gresificación," M.S. thesis, Facultad de Minas Escuela de Ingeniería de Materiales, Universidad Nacional de Colombia, Medellín, Colombia, 2009
  • [38] L. C. Illera, "Raw materials for the ceramics industry from norte de santander. i. mineralogical, chemical and physical characterization," Rev. Fac. Ing. Univ. Antioquia, no. 80, pp. 31–37, Jul. 2016.