Pie Model for Lemmatization, POS Tagging, and Morphological Analysis of Western Armenian
- 1. École nationale des chartes-PSL / Calfa / LIPN, CNRS UMR 7030
- 2. Université Sorbonne Paris Nord
- 3. SeDyL, UMR8202, INALCO, CNRS, IRD
Description
Data :
- Yavrumyan Marat : Github Repository
Results :
For detailed experiments and results, please refer to the linked publication. The following table displays accuracy (f1-score).
task_name |
all |
ambiguous-tokens |
known-tokens |
unknown-tokens |
abbr |
0.9977 (0.8399) |
0.7045 (0.5866) |
0.998 (0.8563) |
0.987 (0.4967) |
adptype |
0.9969 (0.9628) |
0.9147 (0.9216) |
0.9968 (0.9631) |
0.9982 (0.333) |
animacy |
0.9851 (0.9655) |
0.9586 (0.9258) |
0.99 (0.977) |
0.7918 (0.7638) |
aspect |
0.9982 (0.8154) |
0.9893 (0.9566) |
0.9987 (0.8496) |
0.9768 (0.7511) |
case |
0.9902 (0.9388) |
0.9636 (0.9342) |
0.993 (0.9555) |
0.8812 (0.5959) |
connegative |
0.9969 (0.4992) |
0.5073 (0.3366) |
0.9969 (0.4992) |
0.9953 (0.4988) |
definite |
0.9756 (0.9679) |
0.9156 (0.864) |
0.9781 (0.9707) |
0.8783 (0.8836) |
degree |
0.9632 (0.1962) |
0.2944 (0.1516) |
0.963 (0.2453) |
0.9696 (0.2461) |
deixis |
0.9979 (0.9506) |
0.8254 (0.7873) |
0.9979 (0.9523) |
0.9964 (0.2496) |
hyph |
0.9987 (0.9116) |
0.9716 (0.9049) |
0.9988 (0.9158) |
0.9971 (0.4993) |
lemma |
0.9879 (0.9098) |
0.9173 (0.5108) |
0.991 (0.9413) |
0.865 (0.7453) |
mood |
0.9964 (0.6131) |
0.9744 (0.7198) |
0.9968 (0.6152) |
0.9833 (0.8434) |
number |
0.9895 (0.9777) |
0.9626 (0.9172) |
0.9931 (0.9847) |
0.8505 (0.7682) |
numform |
0.9974 (0.876) |
0.8033 (0.597) |
0.9975 (0.879) |
0.9953 (0.6234) |
numtype |
0.9967 (0.5264) |
0.7854 (0.3376) |
0.9967 (0.5264) |
0.9964 (0.5552) |
person |
0.9978 (0.9899) |
0.9675 (0.9414) |
0.9981 (0.9919) |
0.9862 (0.9073) |
person[psor] |
0.9919 (0.249) |
0.5312 (0.2313) |
0.9921 (0.249) |
0.983 (0.2479) |
polarity |
0.9969 (0.9928) |
0.9804 (0.9687) |
0.9973 (0.9936) |
0.9776 (0.9602) |
polite |
0.9991 (0.4998) |
0.6014 (0.3755) |
0.9991 (0.4998) |
0.9982 (0.4995) |
pos |
0.9933 (0.9897) |
0.9874 (0.9611) |
0.9967 (0.9949) |
0.8606 (0.5483) |
poss |
0.9974 (0.9541) |
0.8635 (0.7017) |
0.9974 (0.9551) |
0.9975 (0.4994) |
prontype |
0.9949 (0.9189) |
0.882 (0.742) |
0.995 (0.9211) |
0.9873 (0.317) |
reflex |
0.9957 (0.871) |
0.6424 (0.537) |
0.9956 (0.8716) |
0.9989 (0.4997) |
style |
0.9918 (0.1423) |
0.4598 (0.126) |
0.9921 (0.1423) |
0.9801 (0.1414) |
subcat |
0.9957 (0.9825) |
0.9008 (0.8952) |
0.9969 (0.9874) |
0.9493 (0.875) |
tense |
0.9979 (0.9913) |
0.9833 (0.7189) |
0.998 (0.9921) |
0.9913 (0.9613) |
typo |
0.9985 (0.4996) |
0.8889 (0.4706) |
0.9986 (0.4996) |
0.9975 (0.4994) |
verbform |
0.9956 (0.7889) |
0.9731 (0.9462) |
0.9961 (0.9874) |
0.9783 (0.7649) |
voice |
0.99 (0.6858) |
0.8393 (0.7731) |
0.9917 (0.693) |
0.9232 (0.4915) |
Models can be used on Deucalion, the lemmatization service from École nationale des chartes-PSL.
Selected Bibliography:
Vidal-Gorène, C., Khurshudyan, V., & Donabédian-Demopoulos, A. (2020, December). Recycling and comparing morphological annotation models for Armenian diachronic-variational corpus processing. In Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects (pp. 90-101).
Vidal-Gorène C., Tomeh N., and Khurshudyan V. (2024, November). Cross-Dialectal Transfer and Zero-Shot Learning for Armenian Varieties: A Comparative Analysis of RNNs, Transformers and LLMs. In Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities, pages 438–449, Miami, USA. Association for Computational Linguistics.
Files
Files
(1.0 GB)
Name | Size | Download all |
---|---|---|
md5:80999440a61bb0331bedd6a2ebe0babf
|
34.3 MB | Download |
md5:07f72a6581f0344194a9afe0e0849ece
|
34.3 MB | Download |
md5:cd4a016f170ddf292adf6624a19555d6
|
34.3 MB | Download |
md5:e3d3981a209c2201eecaa24a1e82eec5
|
34.3 MB | Download |
md5:9430852f44be960a94e371f3f7b34ea1
|
34.3 MB | Download |
md5:89847d8616a06ba2e302f2861c6916ea
|
34.3 MB | Download |
md5:f25dc380da411578fcaf1ea9218deee8
|
34.3 MB | Download |
md5:bde8d2a5e3c136df0df7c847e19554e9
|
34.3 MB | Download |
md5:b838855c07cee71ab955407decfdbec0
|
34.3 MB | Download |
md5:507ed04a34656e9ff3e41c2a9d13f536
|
34.3 MB | Download |
md5:e7d1281b92c4b5f3be9c6b1ae35231b7
|
34.3 MB | Download |
md5:0fac501d991fcd8aa072a4056c4e34e9
|
54.7 MB | Download |
md5:2e87c63b80f0c41465b03279e932cf6c
|
34.3 MB | Download |
md5:76eaf68a6422a1ef762380b6ef1ba20a
|
34.3 MB | Download |
md5:4e95c38678b6a18d92a72034ea42473d
|
34.3 MB | Download |
md5:d425d8fa0914d1ed556debd9bb4d393c
|
34.3 MB | Download |
md5:b7b450b50398003905c864f86a2819ed
|
34.3 MB | Download |
md5:0c1e389006060331b93432e668789fdb
|
34.3 MB | Download |
md5:375aede41f5c5887b34bad60ae8b4835
|
34.3 MB | Download |
md5:e3720b2c094fa4aa43fd7feb635aa90d
|
34.3 MB | Download |
md5:db06e5c5fe34da4808ca4476c953adbd
|
23.9 MB | Download |
md5:8f9b5907ce6af946be1cefb4fbd240a6
|
34.3 MB | Download |
md5:77228ce759c97c0476d2a08da9dece36
|
34.3 MB | Download |
md5:4b49eef8c47abed265469469de8e62c4
|
34.3 MB | Download |
md5:457eb7a705553200aa60b449afc74cbc
|
34.3 MB | Download |
md5:a5a0900db0af354fd33075dde7067009
|
34.3 MB | Download |
md5:937eca8b52603772594cc5193fc2faaf
|
34.3 MB | Download |
md5:a8d7534afca7826c11a9c41d8be2a049
|
34.3 MB | Download |
md5:01dac6c71a459d1cc1d0490f7967c5f6
|
34.3 MB | Download |
md5:85e246928040d3902eaddbe0187f0cb9
|
34.3 MB | Download |
Additional details
Related works
- Is described by
- Publication: https://aclanthology.org/2024.nlp4dh-1.42/ (URL)
- Is source of
- Software: https://dh.chartes.psl.eu/deucalion/fr (URL)
Funding
- DALiH – Digitizing Armenian Linguistic Heritage: Armenian Multivariational Corpus and Data Processing ANR-21-CE38-0006
- Agence Nationale de la Recherche