Published November 9, 2024 | Version 1.0.0
Model Open

Pie Model for Lemmatization, POS Tagging, and Morphological Analysis of Eastern Armenian

  • 1. École nationale des chartes-PSL / Calfa / LIPN, CNRS UMR 7030
  • 2. LIPN, CNRS UMR 7030
  • 3. SeDyL, UMR8202, INALCO, CNRS, IRD

Contributors

  • 1. Yerevan State University

Description

The models were trained for lemmatization, POS-tagging, and morphological analysis of Eastern Armenian. The training dataset used was the Eastern Armenian corpus from Universal Dependencies (09/2024 release), comprising 52,950 wordforms (42,337 for training / 5,370 for validation / 5,243 for testing). Sentences cover a large set of documents: blog, fiction, grammar-examples, legal, news, nonfiction. Note that the input data should be pre-tokenized.

The model development was part of the ANR project ANR-21-CE38-0006 "DALiH - Digitizing Armenian Linguistic Heritage", led by Victoria Khurshudyan (Inalco, SeDyL, CNRS, IRD), with initial contributions from Calfa. Models have been developed for the EMNLP 2024 conference (NLP4DH workshop), and rely on the PIE framework.

Data :

For the training dataset, see:

Results :

For detailed experiments and results, please refer to the linked publication. The following table displays accuracy (f1-score).

task_name

all

ambiguous-tokens

known-tokens

unknown-tokens

abbr

0.997 (0.8622)

0.8864 (0.7991)

0.997 (0.8631)

0.9986 (0.7497)

adptype

0.9916 (0.6512)

0.8246 (0.7106)

0.9915 (0.6526)

0.9945 (0.3324)

animacy

0.9588 (0.92)

0.8949 (0.8311)

0.966 (0.9327)

0.733 (0.6866)

aspect

0.9909 (0.538)

0.9727 (0.7321)

0.993 (0.6421)

0.9245 (0.4644)

case

0.9714 (0.9624)

0.9167 (0.8801)

0.977 (0.9672)

0.792 (0.7241)

definite

0.9738 (0.9664)

0.9076 (0.8619)

0.9782 (0.9713)

0.8346 (0.8481)

degree

0.9491 (0.2435)

0.2378 (0.0961)

0.9482 (0.2434)

0.9794 (0.4948)

lemma

0.9909 (0.9502)

0.9434 (0.7085)

0.996 (0.9917)

0.8298 (0.6842)

mood

0.9942 (0.8632)

0.9762 (0.847)

0.9959 (0.8962)

0.9382 (0.6227)

nametype

0.9809 (0.359)

0.8 (0.1778)

0.9823 (0.3639)

0.9369 (0.2956)

number

0.9619 (0.7737)

0.9301 (0.8898)

0.9664 (0.782)

0.8181 (0.6069)

number[psor]

0.9954 (0.3326)

0.2 (0.1667)

0.996 (0.3327)

0.9753 (0.3292)

numform

0.991 (0.3975)

0.7115 (0.4157)

0.9909 (0.3974)

0.9952 (0.4994)

numtype

0.9968 (0.6147)

0.8571 (0.8381)

0.997 (0.623)

0.9904 (0.6035)

person

0.9936 (0.9532)

0.986 (0.9641)

0.9954 (0.9702)

0.9362 (0.66)

person[psor]

0.9949 (0.2494)

0.2 (0.1667)

0.9955 (0.2494)

0.9753 (0.2469)

polarity

0.9785 (0.9558)

0.9318 (0.9015)

0.9799 (0.9588)

0.9348 (0.8632)

pos

0.9911 (0.9881)

0.9885 (0.9794)

0.9959 (0.9928)

0.8387 (0.5319)

poss

0.9959 (0.9283)

0.8213 (0.7389)

0.9958 (0.9289)

0.9986 (0.4997)

prontype

0.995 (0.9162)

0.9101 (0.8508)

0.9951 (0.917)

0.9918 (0.363)

subcat

0.9805 (0.9232)

0.8349 (0.836)

0.984 (0.9351)

0.8696 (0.7021)

tense

0.9942 (0.9726)

0.9767 (0.4651)

0.995 (0.9776)

0.9671 (0.7785)

verbform

0.985 (0.7933)

0.9565 (0.7614)

0.9869 (0.7964)

0.9266 (0.7046)

voice

0.9753 (0.5995)

0.8213 (0.807)

0.9787 (0.6107)

0.8655 (0.5098)

 

Models can be used on Deucalion, the lemmatization service from École nationale des chartes-PSL.

Selected Bibliography:

Vidal-Gorène, C., Khurshudyan, V., & Donabédian-Demopoulos, A. (2020, December). Recycling and comparing morphological annotation models for Armenian diachronic-variational corpus processing. In Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects (pp. 90-101).

Vidal-Gorène C., Tomeh N., and Khurshudyan V. (2024, November). Cross-Dialectal Transfer and Zero-Shot Learning for Armenian Varieties: A Comparative Analysis of RNNs, Transformers and LLMs. In Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities, pages 438–449, Miami, USA. Association for Computational Linguistics.

Files

Files (637.6 MB)

Name Size Download all
md5:8d6f9719ca811acd87fd4739aba182b2
24.3 MB Download
md5:cc4cc90c1007d31c03eef889412d9015
24.3 MB Download
md5:fb89e7745baa19f29160be22c342abe0
24.3 MB Download
md5:4b3698bd9e2e887a84d56acb27a5b8b5
24.3 MB Download
md5:dcf428431b68b0dbe75ac8201525f143
24.3 MB Download
md5:0e94932d78e8fc8d6027978221977567
24.3 MB Download
md5:afd4972ca3680b807c71d84963ffa3f9
24.3 MB Download
md5:743d351c8af0f085c1a185d0e3f42e5f
54.3 MB Download
md5:84b3dc67a4870283ac561774a948488b
24.3 MB Download
md5:f6bce3a5eeecd20573e6f64f46de9994
24.3 MB Download
md5:18fcc7d3e7c50bd49b4082b783dfa5be
24.3 MB Download
md5:678200f987b679aeac7bf257d9e59141
24.3 MB Download
md5:c54c5e83cc270781e37a17457054c395
24.3 MB Download
md5:455e452603af16307f08291de42a5762
24.3 MB Download
md5:adf797662ec835fe35449074675047d6
24.3 MB Download
md5:21e25f361679e025d69a3e8ecbd4dcf9
24.3 MB Download
md5:54ef7a2d2641014ba143a4c527c3b678
24.3 MB Download
md5:d0382cfc8cf7365efe325fb2ccb5a615
24.3 MB Download
md5:9f6011039c800559165429947a807beb
23.7 MB Download
md5:9a75b44607f2b5a09d0c2cb2a34e65df
24.3 MB Download
md5:68fb99cb74b4d8f8fb96d5eecc8557dc
24.4 MB Download
md5:2cd683d50e0ae0abaee381814caa4b54
24.3 MB Download
md5:3f60b4882c8b1ce1d3aa3ce5bc5d123c
24.3 MB Download
md5:4ec2420faaf664f47df04ceb4c69aad2
24.3 MB Download
md5:ead902ddc5ab9e10192fff46594fe531
24.3 MB Download

Additional details

Related works

Is described by
Publication: https://aclanthology.org/2024.nlp4dh-1.42/ (URL)
Is source of
Software: https://dh.chartes.psl.eu/deucalion/fr (URL)

Funding

Agence Nationale de la Recherche
DALiH – Digitizing Armenian Linguistic Heritage: Armenian Multivariational Corpus and Data Processing ANR-21-CE38-0006