Published October 29, 2025
| Version v6
Software
Open
infoqualitylab/retraction-indexing-agreement: Fall 2025 Preprint Final Code
Creators
Description
Cite code as:
- Salami, M. O. & McCumber, C. (2025). Retraction indexing agreement: Fall 2025 Preprint Final Code (2.0.1) [Python]. Zenodo.https://doi.org/10.5281/zenodo.17518295
- Part of the software for https://doi.org/10.5281/zenodo.7851297
Code contributors:
- Jou (Laura) Lee (ORCID: 0000-0001-8927-0370) prototyped an earlier version v1.1.0 pipeline for the STI2023 Paper.
- Jodi Schneider (ORCID: 0000-0002-5098-5667) supervises the project.
Preprint:
- Salami, M. O., McCumber, C., & Schneider, J. (2025). Analyzing the consistency of retraction indexing. MetaArXiv. DOI TO BE GENERATED. OLD 2024 Version 1 available at https://doi.org/10.31222/osf.io/gvfk5
Dataset:
- Salami, M. O. & McCumber, C. (2024). Redacted Dataset for Analyzing the Consistency of Retraction Indexing (Version 1) [Data set]. University of Illinois Urbana-Champaign Databank. https://doi.org/10.13012/B2IDB-8114408_V1
Files
retraction-indexing-agreement-main.zip
Files
(106.1 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:55ea40bd553db5dd9885c7e2596a8116
|
106.1 kB | Preview Download |
Additional details
Related works
- Is supplement to
- Software: https://github.com/infoqualitylab/retraction-indexing-agreement/tree/v2.0.0 (URL)
Funding
- Alfred P. Sloan Foundation
- Reducing the Inadvertent Spread of Retracted Science II: Research and Development towards the Communication of Retractions, Removals, and Expressions of Concern G-2022-19409
- U.S. National Science Foundation
- Using network analysis to assess confidence in research synthesis 2046454 CAREER
- University of Wisconsin–Madison
- Harvard University
- 2024-2025 Perrin Moorhead Grayson and Bruns Grayson Fellowship at the Harvard Radcliffe Institute for Advanced Study
Software
- Repository URL
- https://github.com/infoqualitylab/retraction-indexing-agreement/
- Programming language
- Python, Jupyter Notebook
- Development Status
- Active