Published May 13, 2025 | Version v17
Dataset Open

Multi-scale footprinting

Description

Data associated with the multi-scale footprinting project.

(1) Tn5_NN_model.h5

Pre-trained CNN-based Tn5 bias model implemented with Keras. Takes local DNA sequence context as input and predicts Tn5 insertion bias. See tutorial for how to use this model.

(2) Tn5ModelTutorial.ipynb

Tutorial showing how to use the pre-trained Tn5 bias model to score input sequences.

(3) hg38Tn5Bias.tar.gz, hg19Tn5Bias.tar.gz, mm10Tn5Bias.tar.gz, mm39_bias_v2.h5, panTro6Tn5Bias.tar.gz, sacCer3Tn5Bias.tar.gz, dm6Tn5Bias.tar.gz, danRer11Tn5Bias.tar.gz, ce11Tn5Bias.tar.gz

h5 files containing the genome-wide Tn5 bias pre-computed using our convolutional neural net model.

(4) dispModel.tar.gz

Zipped folder containing Tn5 cutting dispersion models for each footprint window radius. The footprint window size in our paper refers to the diameter the footprint window, which is twice the number listed here. During footprinting, these models are loaded into the footprintingProject object and then used for footprinting.

(5) cisBP_mouse_pwms_2021.rds, cisBP_human_pwms_2021.rds

Motif PWMs used in our study.

(6) TFBS_model.h5

Pre-trained footprint-to-TF binding prediction models. The models takes local multi-scale footprints as input and predict whether a genomic position is bound by a TF if the corresponding motif is present. This is obsolete. For the best performance of TF binding prediction, please use our seq2PRINT-based TF binding prediction. 

(7) clusterLabels.txt, clusterLabelsAllTFs.txt

Cluster labels of TFs. clusterLabels.txt is the clustering result directly obtained from clustering multi-scale footprints of all TFs with ChIP data. clusterLabelsAllTFs.txt includes other TFs without ChIP data. The cluster membership of these TFs were assigned based on motif homology among TFs.

(8) BMMCTutorial.tar.gz

Data needed for our R version tutorial. Content of this foder can be put into the /data/BMMCTutorial folder.

(9) PBMC_bulk_ATAC_tutorial fragments files

Files used by our PBMC bulk ATAC tutorial for scPrinter. See https://github.com/buenrostrolab/scPrinter for details.

(10) PBMC_bulk_ATAC_tutorial example result TFBS bigwigs (Bcell_0_TFBS.bigwig, Bcell_1_TFBS.bigwig, Monocyte_0_TFBS.bigwig, Monocyte_1_TFBS.bigwig , Tcell_0_TFBS.bigwig, Tcell_1_TFBS.bigwig).

Example result files generated by our PBMC bulk ATAC tutorial for scPrinter. See https://github.com/buenrostrolab/scPrinter for details. Here we filtered ATAC-seq peaks based on accessibility, keeping ~70k highly accessible peaks.

(11) CTCF_degron.tar.gz

Input data used for the CTCF degron analysis. See https://github.com/buenrostrolab/PRINT/blob/main/analyses/degron/ENCODE_CTCF_degron.ipynb for details. 

(12) obsBias.tsv

Input data used for training the Tn5 bias model. For more details see https://github.com/buenrostrolab/PRINT/blob/main/code/predictBias.py (line 84)

Files

scprinter_BMMCTutorial.zip

Files (133.5 GB)

Name Size Download all
md5:c238c78212bbfed6eba239f465c3818c
289.7 MB Download
md5:98e9bb03178bb5f0c0f834d894cb5e50
289.7 MB Download
md5:5e8ba6dc107e55eeac55dee1579a435f
97.8 MB Download
md5:95a545d9acfc6121bf40f6330e74fd03
401.1 MB Download
md5:10d8d17f94f695c06c0f66968f67b55b
366.5 MB Download
md5:cc6a20fa4096b52b337b29809ce38bfa
231.6 kB Download
md5:2440737c23bfda359aa6b9c4e4cd02c7
162.9 kB Download
md5:4a9d952540976f278456929016a423f0
2.3 GB Download
md5:4da32a3f73dbca46bf4528138e3b5ad0
6.7 GB Download
md5:8d4fe94ccbde141f6edefc1f0ce36c10
6.1 GB Download
md5:cbd6cefed73f36aaf121aa73f2d2b658
2.4 MB Download
md5:341a011610c7db9a1418917e359d3169
735.2 kB Download
md5:4df576eea4313d727b57ce361fd5a299
681.4 kB Download
md5:c69a893ad99157223e880714af46c6fb
575.6 MB Download
md5:7f256a41b7232bd5c3389b0e190d9788
515.1 MB Download
md5:013ca480e6a7d3f541ef2404ee56a3c7
12.5 GB Download
md5:f94b809f85864c1663e13b13c9b804cc
10.7 GB Download
md5:c56f03c32bc793bf2a5cf23d4f66f20e
12.8 GB Download
md5:89f205e6be682b15f87a2c2cc00e8cbd
11.2 GB Download
md5:29473ec7d3108683d90b92a783704cf0
10.9 GB Download
md5:901b928946b65e7bfba3a93e085f19f0
9.8 GB Download
md5:9445a55bcebb3940ad98178370980318
131.7 kB Download
md5:36520483892ea158c0c4a1d672a4827c
10.9 GB Download
md5:1782f01f170982ea595228f7820f1d17
10.9 GB Download
md5:c63039ebaec62dd24445d09ac373dc18
289.9 MB Download
md5:7848069b8e6733ef77ba3302b9ba89fe
289.9 MB Download
md5:fc58e8698b1f869b67b2c1b7b4398b3b
276.1 kB Download
md5:c2739b3347277e7817f2ca660e0bb76b
869.3 MB Download
md5:146d1d8213cb3b42159e6bdad2959945
12.2 GB Download
md5:ba208a4cdc2e1fc09d66cac44e85e001
11.0 GB Download
md5:a1a1984731c36d69f377ca16878a75b8
92.3 MB Download
md5:b714e7c592518716e165b4ff20431e3d
92.3 MB Download
md5:4ac565cff8c5fb0764cdce61135a9fc3
94.0 MB Download
md5:6f5e5e91b273c35894a2d60fd9d18316
94.0 MB Download
md5:852db7502ae08c0f1a91365c11ae9db2
92.2 MB Download
md5:586f2f2d5983f500a97de6c80155d3c1
92.2 MB Download
md5:a5e8c0162be0152c75e0af20125b9e42
48.6 MB Download
md5:ed811aabe1ffa4bdb1520d4b25ee9289
44.7 MB Download
md5:d9027cf73b558d03276483384ddad88c
33.9 MB Preview Download
md5:02ece57159843bf9daad682f6124acfd
289.3 MB Download
md5:48346c2467f9cc676b0e41673114cf59
289.3 MB Download
md5:2284373c8c24ac94ff874755a9e18108
390.2 kB Download
md5:c7ab928fb61641a5b6b61087db9b055f
390.2 kB Download
md5:ec69fb1dc3269ca3eba27e412c4fef6b
994.7 kB Download
md5:7893684aa234df3b58995b212d9a8363
651.2 kB Download
md5:5bd79a9c4f3374241a6f4341eb39fe2c
651.0 kB Download
md5:e425f021e775785ba57daf28190003e1
333.6 kB Download
md5:5ea6c26fcd54ad2aff3d9705ed54dd3c
97.3 kB Download
md5:a21e2859fdfc3cba98770c1952e4845b
93.3 kB Preview Download

Additional details

Dates

Updated
2025-02-13