Mesh and configuration files to perform coupled heat+fluid simulations on a realistic human eyeball geometry with Feel++
- 1. Cemosis, IRMA UMR 7501, Université de Strasbourg, CNRS, France
- 2. Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
Description
Run the simulation
With slurm
Set up position and desired mesh in the `run.slurm` file. Then, submit the job with the following command:
sbatch run.slurm
Without slurm
Run by hand the command of the run.slurm
file.POSITION=prone # prone supine standing
SOLVER_TYPE=simple # simple lsc
MESH_INDEX=M4 # M1 M2 M3 M4 M5
mpirun -np 128 feelpp_toolbox_heatfluid \
--config-files eye-${POSITION}.cfg pc_${SOLVER_TYPE}.cfg \
--heat-fluid.json.patch='{ "op": "replace", "path": "/Meshes/heatfluid/Import/filename", "value": "$cfgdir/mesh/Mr/'${MESH_INDEX}'/Eye_Mesh3D_p$np.json" }' \
--heat-fluid.scalability-save=1 --heat-fluid.heat.scalability-save=1 --heat-fluid.fluid.scalability-save=1
Available meshes
The meshes are available and are already partitioned for parallel computing:
M0 : 1, 64, 128, 256, 384, 512, 640, 768
M1 : 1, 64, 128, 256, 384, 512, 640, 768
M2 : 1, 64, 128, 256, 384, 512, 640, 768
M3 : 1, 64, 128, 256, 384, 512, 640, 768
M4 : 1, 64, 128, 256, 384, 512, 640, 768
M5 : 1, 64, 128, 256, 384, 512, 640, 768
M6 : 128, 256, 384, 512, 640, 768
Files
bc-velocity.json
Files
(18.0 GB)
Name | Size | Download all |
---|---|---|
md5:1816049d9f47ba7fe41e0c9db41b1511
|
815 Bytes | Preview Download |
md5:86ee59a09fd2c25534777b72918a9c36
|
668 Bytes | Download |
md5:6eef78259cae83e8de11e0aa09adccf8
|
615 Bytes | Download |
md5:590833a3c5e4f7fe2c1b05f8a95b5976
|
637 Bytes | Download |
md5:8f4c7c5d3c59bec2779ce95ee40305cf
|
2.8 kB | Preview Download |
md5:5852f952b5fedfe83d734d81b678e54a
|
171 Bytes | Preview Download |
md5:04abc08124863858402c9c966fcd063f
|
18.0 GB | Preview Download |
md5:f80fc4c3639e71f550e822417da77c2f
|
1.8 kB | Download |
md5:eee9e24266ca75da4dfb37194157b803
|
1.9 kB | Download |
md5:bab520ee253014c4acdcf2eed3f83e20
|
2.6 kB | Preview Download |
md5:eacd1a5e798f740b259acbfd126e3695
|
1.1 kB | Download |
md5:23e98f36b11dd3eb151547e402282d9a
|
106 Bytes | Download |
Additional details
Funding
- Agence Nationale de la Recherche
- Exa-MA – Methods and Algorithms for Exascale ANR-22-EXNU-0002
- Agence Nationale de la Recherche
- IRMIA – Institut de Recherche en Mathématiques, ses Interactions et Applications ANR-11-LABX-0055