'Brain Fogging' in Special Needs Children- a Post-Covid Neurobiological Enigma
- 1. Journal of IAP Chapter of Neurodevelopmental Pediatrics
Contributors
- 1. Dr. Devika. S. Kumar- Neuro Biochemist, Department of Research, Panimalar Medical College, Chennai. Dr. Nagasravani. J, FIAP(NDP)- Developmental Paediatrician, Vistara CDC, Hyderabad, Telangana Dinakaran- Clinical Psychologist, Vistara CDC, Chennai Deborahl. A- Developmental Therapist & Fellow IAP (Dev Nurse Counselor); VistaraCDC, Chennai * Dr. Lal. D.V Nair- Developmental Pediatrician, Program Director, Saveetha CDC, Saveetha Medical College, Chennai
Description
COVID-19 is associated with clinically significant
symptoms- post-Covid syndromes, despite its
immediate resolution. COVID-19 cases continue
to experience the after-effects of the disease
including multi-system dysfunctions, thus
causing a drain-out of health resources in dealing
with its aftermath. Post-COVID-19 syndrome is
determined as signs and symptoms that appear
during or after an infection consistent with
SARS-CoV-2 disease, persist for more than 12
weeks, and are not explained by an alternative
diagnosis. This review presents the most
frequent neurological complaints associated with
COVID-19 along with a recondite of brain fog.
In the context of post-COVID-19, Pediatricians,
as well as parents, should be aware of a wide
spectrum of neurological COVID-19 signs and
its association with impairments, commonly
called ‘ brain fog’. Further, investigation of
the molecular mechanism behind brain fog
is suggested. Targeting the newly identified
mechanisms may aid in finding newer molecules
for treating brain fog. Though in adult Montreal
cognitive tests for executive dysfunctions and
Files
REVIEW ARTICLE-4 (REVISED).pdf
Files
(265.6 kB)
Name | Size | Download all |
---|---|---|
md5:8cd968274454f2b271e50aaa7b5b61c1
|
265.6 kB | Preview Download |
Additional details
Dates
- Accepted
-
2024-09-24
References
- 1. Carfì A, Bernabei R, Landi F, for the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324(6):603–605. doi:10.1001/jama.2020.12603 2. Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022;604(7907):697–707. doi: 10.1038/s41586-022-04569-5. 3. Littlejohns T.J, Holliday J, Gibson L.M, et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management, and future directions. Nat. Commun. 2020;11(1):2624. doi: 10.1038/s41467-020-15948-9.
- 4. NAlbanian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601– 615. 5. Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol. 2021;72:384–396. 6. Havers FP, Reed C, Lim T, et al. Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020. JAMA Intern Med. 2020;180(12):1576–1586. doi:10.1001/jamainternmed.2020.4130 7. Wu SL, Mertens AN, Crider YS, Nguyen A, Pokpongkiat NN, Djajadi S, Benjamin-Chung J. Substantial underestimation of SARS-CoV-2 infection in the United States.Nature Communications, 2020,11(1):4507. https://doi.org/10.1038/s41467-020-18272-4 8. Harris E. Millions of US Children Experience Range of Long COVID Effects. JAMA. 2024;331(9):726. doi:10.1001/jama.2024.0356]. 9. Awan H.A, NajmuddinDiwan M, Aamir A, Ali M, Di Giannantonio M, Ullah I, Shoib S, De Berardis D. SARS-Cov-2 and the Brain: What Do We Know about the Causality of 'cognitive COVID? J. Clin. Med. 2021;10:3441. doi: 10.3390/jcm10153441 10. Lopez-Leon S, Wegman-Ostrosky T, Ayuzo del Valle N.C, et al. Long-COVID in Children and Adolescents: A Systematic Review and Meta-Analyses. Sci. Rep. 2022;12:9950. doi: 10.1038/ s41598-022-13495-5 11. Sankara Narayanan, P, Shanmuganathan, H, Kumar, D, Nair, L, Kamalakannan, S. Multisystem Inflammatory Syndrome-Neonate: Biochemical Parameters as Early Marker of Adverse Neurodevelopmental Outcome. Open Journal of Pediatrics. 2022, 12: 767-782. doi: 10.4236/ ojped.2022.125078 12. Ying-yi Luan, Cheng-hong Yin, Yong-ming Yao Update Advances on C-Reactive Protein in COVID-19 and Other Viral Infections Frontiers in immunology,2021, 10: 1 0 . 3 3 8 9 / fimmu.2021.720363 13. Munblit D, Nicholson T.R, Needham D.M, et al. Studying the Post-COVID-19 Condition: Research Challenges, Strategies, and Importance of Core Outcome Set Development. BMC Med. 2022;20:50. doi: 10.1186/s12916-021-02222-y 14. Altuna M, Sánchez-Saudinós MB, Lleó A. Cognitive Symptoms after COVID-19. Neurol. Perspect. 2021;1:S16–S24. doi: 10.1016/j.neurop.2021.10.005. 15. Zimmermann P, Pittet L.F, Curtis N. How Common is Long COVID in Children and Adolescents? Pediatr. Infect. Dis. J. 2021;40:e482–e487.doi: 10.1097/INF.0000000000003328.] 16. Roge I, Smane L, Kivite-Urtane A, Pucuka Z, Racko I, Klavina L, Pavare J. Comparison of Persistent Symptoms after COVID-19 and Other Non-SARS-CoV-2 Infections in Children. Front. Pediatr. 2021;9:752385. doi: 10.3389/fped.2021.752385. 17. Behnood S.A, ShafranR., Bennett S.D,et al. Persistent Symptoms Following SARS-CoV-2 Infection amongst Children and Young People: A Meta-Analysis of Controlled and Uncontrolled Studies. J. Infect. 2022;84:158–170. doi: 10.1016/j.jinf.2021.11.011.
- 18. Gonzalez-Aumatell A, Bovo MV, Carreras-Abad C, et al. Social, Academic, and Health Status Impact of Long COVID on Children and Young People: An Observational, Descriptive, and Longitudinal Cohort Study. Children. 2022;9:1677. doi: 10.3390/children9111677 19. Morand A, Campion JY, Lepine A, et al.Similar patterns of [18F]-FDG brain PET hypometabolism in pediatric and adult patients with long COVID: A pediatric case series. Eur. J. Nucl. Med. 2021;49:913–920. doi: 10.1007/s00259-021-05528-4. 20. Aminoff EM, Kveraga K, Bar M. The role of the parahippocampal cortex in cognition. Trends Cogn Sci. 2013;17(8):379-90. doi: 10.1016/j.tics.2013.06.009. 21. Troitskaya LA, Plotnikova IA, Avakyan GG, et al. Neuropsychological Evaluation of Cognitive Disorders in Children after COVID-19. Eur. J. Transl. Myol. 2022;32 doi: 10.4081/ejtm.2022.10685. 22. Pistarini C, Fiabane E, Houdayer E, Vassallo C, Manera, MR, Alemanno F. Cognitive and emotional disturbances due to COVID-19: An exploratory study in the rehabilitation setting. Frontiers in Neurology2021, 12, 643646. https://doi.org/10.3389/fneur.2021.643646 23. Paul Foret-Bruno, Roz Shafran, Terence Stephenson, et al. Prevalence and co-occurrence of cognitive impairment in children and young people up to 12 monthspost-infection with SARS- CoV-2 (Omicron variant),Brain, Behavior, and Immunity, 2024;119: 989-994, doi.org/10.1016/j. bbi.2024.05.001 24. Chen, F, Cao, H, Baranova, A. et al. Causal associations between COVID-19 and childhood mental disorders. BMC Psychiatry, 2023, 23: 922. https://doi.org/10.1186/s12888-023-05433-0 25. Jyonouchi H, Geng L, Rossignol DA, Frye RE. Long COVID Syndrome Presenting as Neuropsychiatric Exacerbations in Autism Spectrum Disorder: Insights for Treatment. J Pers Med. 2022;12(11):1815. doi 10.3390/jpm12111815]. 26. Montalvan V, Lee J, Bueso T, et al. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. ClinNeurolNeurosurg. 2020;194:105921. doi: 10.1016/j. clineuro.2020.105921 27. Boesl, F, Audebert, H, Endres, M, Pruss, H, & Franke, C. A neurological outpatient clinic for patients with post-COVID-19 syndrome—A report on the clinical presentations of the first 100 patients. Frontiers in Neurology, 2021,12: 738405. https://doi.org/10.3389/fneur.2021.738405 28. Aghajani Mir, M. Brain Fog: a Narrative Review of the Most Common Mysterious Cognitive Disorder in COVID-19. MolNeurobiol. 2023; https://doi.org/10.1007/s12035-023-03715-y. 29. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020;vol.71:762–768. doi: 10.1093/cid/ciaa248. 30. Ceban F, Ling S, Lui, LMW, Lee Y, Gill H, Teopiz K. M, McIntyre R. S. Fatigue and cognitive impairment in post-COVID-19 syndrome: A systematic review and meta-analysis. Brain, Behavior, and Immunity, 2022,101: 93-135. https://doi.org/10.1016/j.bbi.2021.12.020 31. MyoungHwa Lee, Daniel P Perl, Joseph Steiner, et al. Neurovascular injury with complement activation and inflammation in COVID-19, Brain,2022,145,(7): 2555–2568, https://doi. org/10.1093/brain/awac151 32. Tanveer A, Akhtar B, Sharif A, Saleem U, Rasul A, Ahmad A, Jilani K. Pathogenic role of cytokines
- in COVID-19, its association with contributing co-morbidities and possible therapeutic regimens. Inflammopharmacology. 2022;30(5):1503-1516. doi: 10.1007/s10787-022-01040-9. Epub 2022 Aug 10. 33. Schweitzer F, Goereci Y, Franke C, et al. Cerebrospinal Fluid Analysis Post-COVID-19 Is Not Suggestive of Persistent Central Nervous System Infection. Ann Neurol. 2022;91(1):150-157. doi:10.1002/ana.26262 34. Bispo DDC, Brandão PRP, Pereira DA, et al. Brain microstructural changes and fatigue after COVID-19. Front Neurol. 2022;13:1029302. doi: 10.3389/fneur.2022.1029302. 35. Greene, C, Connolly, R, Brennan, D. et al. Blood-brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nat Neurosci. 2024, 27:421–432. https://doi.org/10.1038/s41593-024-01576-9] 36. K. Ingeman, L. Frostholm, D.H. Frydendal, K.D. Wright, E. Lockhart, M.E. Garralda, C.U. Rask. A new measure of excessive parental worries about children's health: development of the Health Anxiety by Proxy Scale (HAPYS) Nord. J. Psychiatry.2021, 75 (7):523-31. doi.10.1080/080394 88.2021.1900389 37. Rask CU, Christensen MF, Borg C, Søndergaard C, Thomsen PH, Fink P. The Soma Assessment Interview: new parent interview on functional somatic symptoms in children. J Psychosom Res. 2009 May;66(5):455-64. doi 10.1016/j.jpsychores.2008.10.012. Epub 2009 Jan 17. 38. AgataDebowska, Daniel Boduszek, Marek Ochman, Tomasz Hrapkowicz, MartynaGaweda, AnastazjaPondel, BeataHoreczy, Brain Fog Scale (BFS): Scale development and validation, Personality and Individual Differences, 2024, 216:112427. doi.org/10.1016/j.paid.2023.112427. 39. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms, and recommendations. Nat Rev Microbiol. 2023;21(3):133-146. doi: 10.1038/s41579-022-00846-2. Epub 2023 Jan 13 40. Krishnan K, Lin Y, Prewitt KM, Potter DA. Multidisciplinary Approach to Brain Fog and Related Persisting Symptoms Post COVID-19. J Health Serv Psychol. 2022;48(1):31-38. doi:10.1007/ s42843-022-00056-7 41. Sukel K. Lifting the fog. New Sci. 2022;254(3390):38-41. doi:10.1016/S0262-4079(22)01024-7 42. Xu, Wt., An, Xb., Chen, Mj. et al. A Gene Cluster of Mitochondrial Complexes Contributes to the Cognitive Decline of COVID-19 Infection. Mol Neurobiol.2024.doi.org/10.1007/s12035-024- 04471-3 43. Yang CP, Chang CM, Yang CC, Pariante CM, Su KP. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19. Brain Behav Immun.2022;103:19-27.doi: 10.1016/j.bbi.2022.04.001. 44. Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics. 2023;15(5):1562. doi: 10.3390/ pharmaceutics15051562.