Published 2024 | Version v1
Preprint Open

Machine Learning Applications in Sheet Metal Constitutive Modelling: a review

  • 1. ROR icon University of Coimbra
  • 2. ARISE
  • 3. ROR icon University of Aveiro
  • 4. LASI

Description

The numerical simulation of sheet metal forming processes depends on the accuracy of the constitutive model used to represent the mechanical behaviour of the materials. The formulation of these constitutive models, as well as their calibration process, has been an ongoing subject of research. In recent years, there has been a special focus on the application of data-driven techniques, namely Machine Learning, to address some of the difficulties of constitutive modelling. This review explores different methodologies for the application of Machine Learning algorithms to sheet metal constitutive modelling. These methodologies include the use of machine learning algorithms in the identification of constitutive model parameters and the replacement of the constitutive model by a metamodel created by a machine learning algorithm. A discussion about the merits and limitations of the different methodologies is presented, as well as the identification of some possible gaps in the literature that represent opportunities for future research.

Notes

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 888153.

Files

Machine learning applications in sheet metal constitutive Modelling A review.pdf

Additional details

Funding

European Commission
Vform-xsteels 888153