There is a newer version of the record available.

Published September 21, 2024 | Version 1.1
Publication Open

Largest wildfires in Angola: Correlation of vegetation and meteorological variables with wildfire intensity

  • 1. ROR icon Freie Universität Berlin
  • 2. ROR icon Czech Academy of Sciences, Institute of Physiology
  • 3. Donders Institute for Brain, Cognition and Behaviour
  • 4. ROR icon Rhine-Waal University of Applied Sciences
  • 5. ROR icon Technical University of Munich

Description

Wildfires have significant impacts on biodiversity and their effects have been exacerbated in recent times by global warming. In the present study, we investigated the relationship between wildfire intensity and meteorological variables as a function of vegetation type in Angola, focusing on the largest wildfires in 2020. We used the Globfire, MODIS Surface Reflectance, ERA5-Land, and CHIRPS data to analyze wildfire severity measured by its differenced normalized burn ratio (dNBR), duration, and burnt area, and their correlations with normalized difference vegetation index (NDVI), temperature, precipitation, and wind speed. Our results show significant positive correlations between all measures of fire severity. In general, wildfire severity was positively correlated with pre-fire NDVI and, except for forests, negatively correlated with wind speed. Future studies can build on these results to develop predictive models for mitigation and rapid response to wildfires.

 

Files

CISP-Largest-Wildfires-in-Angola-manuscript.md

Files (2.8 MB)

Additional details

Related works

Is referenced by
Presentation: https://youtu.be/KJkgIhMwrvc?feature=shared (URL)

Funding

National Aeronautics and Space Administration
An Open, Community Supported, Accessible Summer School for Climate Science 80NSSC23K0835

Dates

Submitted
2024-04-26

Software

Programming language
Python

References

  • Artés, T., Oom, D., De Rigo, D., Durrant, T. H., Maianti, P., Libertà, G., & San-Miguel-Ayanz, J. (2019). A global wildfire dataset for the analysis of fire regimes and fire behaviour. _Scientific data_, _6_ (1), 296. DOI: https://doi.org/10.1038/s41597-019-0312-2
  • Beer, T. (1991). The interaction of wind and fire. _Boundary-Layer Meteorology_, _54_ (3), 287-308. https://doi.org/10.1007/BF00183958
  • Catarino, S., Romeiras, M. M., Figueira, R., Aubard, V., Silva, J. M., & Pereira, J. M. (2020). Spatial and temporal trends of burnt area in Angola: Implications for natural vegetation and protected area management. _Diversity_, _12_ (8), 307. https://doi.org/10.3390/d12080307
  • Di Virgilio, G., Evans, J. P., Blake, S. A., Armstrong, M., Dowdy, A. J., Sharples, J., & McRae, R. (2019). Climate change increases the potential for extreme wildfires. _Geophysical Research Letters_, _46 (14), 8517-8526. https://doi.org/10.1029/2019GL083699
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., ... & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. _Scientific data_, _2_ (1), 1-21. https://doi.org/10.1038/sdata.2015.66
  • Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., ... & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. _Earth system science data_, _13_ (9), 4349-4383. https://doi.org/10.5194/essd-13-4349-2021
  • Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. _Trends in Ecology & Evolution, 20_ (9), 503-510. https://doi.org/10.1016/j.tree.2005.05.011
  • Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., Coppola, E., Cruz, F. A., ... & Zaaboul, R. (2021). Climate change information for regional impact and for risk assessment. https://doi.org/10.1017/9781009157896.014
  • Richardson, D., Black, A. S., Irving, D., Matear, R. J., Monselesan, D. P., Risbey, J. S., ... & Tozer, C. R. (2022). Global increase in wildfire potential from compound fire weather and drought. _NPJ climate and atmospheric science_, _5_ (1), 23. https://doi.org/10.1038/s41612-022-00248-4
  • Tošić, I., Mladjan, D., Gavrilov, M. B., Živanović, S., Radaković, M. G., Putniković, S., ... & Marković, S. B. (2019). Potential influence of meteorological variables on forest fire risk in Serbia during the period 2000-2017. _Open Geosciences_, _11_ (1), 414-425. https://doi.org/10.1515/geo-2019-0033
  • Vermote, E. (2021). MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid V061. _NASA EOSDIS Land Processes DAAC: Missoula, MT, USA_. https://doi.org/10.5067/MODIS/MYD09A1.061
  • Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., ... & van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). _Atmospheric chemistry and physics_, _10_(23), 11707-11735. https://doi.org/10.5194/acp-10-11707-2010