Published September 16, 2025
| Version v2
Dataset
Open
CLAP features for Audio Moment Retrieval
Authors/Creators
- 1. LY Corporation
Description
This page includes CLAP features of three datasets used in Language-based audio moment retrieval [1].
- Clotho-Moment
- UnAV100-subset
- TUT Sound Events 2017
Raw wav files are also publicly available here.
[1] H. Munakata, T. Nishimura, S. Nakada, T. Komatsu, "Language-based Audio Moment Retrieval", In Proc. ICASSP, 2024.
How to Use
We can train/evaluate audio moment retrieval models using these features in Lighthouse.
Please check the instructions of Lighthouse.
- Unzip the file with the following commands
Clotho-moment:
for file in clotho-moment_features.tar.part-*.gz; do gunzip "$file"; doneclotho-moment_features.tar.part-* > clotho-moment_features.tartar -xvf clotho-moment_features.tar
UnAV100-subset, TUT Sound Events 2017:
tar -xvf tut2017_features.tar.gztar -xvf unav100-subset_features.tar.gz - Set symbolic links in Lighthouse
ln -s features/{dataset_name} {lighthouse_dir}/features - Train the model
python training/train.py --model qd_detr --dataset clotho-moment --feature clap - Evaluate the model
model=qd_detr
dataset=unav100-subsetfeature=clapmodel_path={lighthouse_dir}/results/qd_detr/clotho-moment/clap/best.ckpteval_split_name=valeval_path=data/unav100-subset/unav100-subset_test_release.jsonlpython training/evaluate.py \--model $model \--dataset $dataset \--feature $feature \--model_path $model_path \--eval_split_name $eval_split_name \--eval_path $eval_path
Files
Files
(22.8 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:f766f2c2650f5f192e0718cc9d56f363
|
992.2 MB | Download |
|
md5:909a021ff8c430ca0fc0153fdbed64c8
|
992.2 MB | Download |
|
md5:e4dd353a39e981ebf3dc5d1e0c6189d6
|
992.2 MB | Download |
|
md5:9c6aeb7fb376f5e1ab3d577f2db6f495
|
992.2 MB | Download |
|
md5:4045e808008d4f0c4dd59b1f78a9a60f
|
992.2 MB | Download |
|
md5:dbb343f6b3dce264aa8e3c3d7333e36d
|
992.2 MB | Download |
|
md5:7bb11a0d6f0916adffe1eb1d120eae88
|
992.2 MB | Download |
|
md5:1cf9f245d9f0090ce8a774da34737328
|
992.2 MB | Download |
|
md5:7a87934c0e4dfac83461d66efb4cf5b5
|
992.2 MB | Download |
|
md5:1bd266ea64b6bc225967f416c313a591
|
992.2 MB | Download |
|
md5:a34f3127d4e379da16bc20b249e5423c
|
992.2 MB | Download |
|
md5:00028b81c2293bff21093c2bd20f6d47
|
992.2 MB | Download |
|
md5:1b54bec9aa984a97bbea6bb2c283beee
|
992.2 MB | Download |
|
md5:86e99130f54c431c56e4112c689e933c
|
992.2 MB | Download |
|
md5:fbd020afab983003fe3e357dd65f8a56
|
992.2 MB | Download |
|
md5:6a2f1ece61478a0b942b233b5545ae02
|
992.2 MB | Download |
|
md5:976451dfb9c656190679975098844a0a
|
992.2 MB | Download |
|
md5:403bd6d1a27d84ce166976105121cece
|
992.2 MB | Download |
|
md5:022ab4011f48345e299acee133a7aa97
|
992.2 MB | Download |
|
md5:3213346d30a0f6a06003946fc01eeebf
|
992.2 MB | Download |
|
md5:c9b6902ffd8b48e19ba2881c1e0e0fe9
|
991.8 MB | Download |
|
md5:021ea1cdc56f10f57f852af0f606e2da
|
984.6 MB | Download |
|
md5:2c30318b30890b0a97d37d62d170f0a9
|
923.8 MB | Download |
|
md5:4d9fe3abef550c5f16495080fca172cf
|
7.7 MB | Download |
|
md5:96f0e63d3571c8145d768c723f949a9c
|
13.3 MB | Download |
Additional details
Related works
- Is derived from
- Dataset: 10.5281/zenodo.3490684 (DOI)