Datasets supporting the paper 'Narrowing the gap for city building height predictions'
Description
###########################################################
Datasets supporting the publication:
Watson, C.S., and Elliott, J.R. Narrowing the gap for city building height predictions
-Please refer to the publication for details on the production of each dataset.
-Please cite the publication and this dataset repository when using the data.
-Dataset owner: John Elliott J.Elliott@leeds.ac.uk
###########################################################
Contents:
Cloud masks showing areas of the DEMs that are affected by cloud cover. Valid elevations are still present in some of these areas.
- quito_cloud_mask.gpkg
- naioribi_cloud_mask.gpkg
- kathmandu_cloud_mask.gpkg
City digital surface models (1.5 m resolution, UTM projections, ellipsoid height) generated from tri-stereo Pleiades imagery:
- dsm_quito.tif
- dsm_nairobi.tif
- dsm_kathmandu.tif
City digital terrain models (1.5 m resolution, UTM projections, ellipsoid height):
- dtm_quito.tif
- dtm_nairobi.tif
- dtm_kathmandu.tif
Acknowledgements:
This research has been supported the UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) Urban Disaster Risk Hub (NE/S009000/1) (Tomorrow’s Cities), and COMET. COMET is the NERC Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics, a partnership between UK Universities and the British Geological Survey. John Elliott is supported by a Royal Society University Research fellowship (UF150282).
Files
dsm_kathmandu.tif
Files
(9.3 GB)
Name | Size | Download all |
---|---|---|
md5:1bd0845e0bab958375c9dcd754e71d24
|
1.4 GB | Preview Download |
md5:b0dbc193458de6dcba855324fa77af61
|
1.6 GB | Preview Download |
md5:d5657b4ba5d6364f80d248af4f8ef55f
|
1.3 GB | Preview Download |
md5:9c616cbf026d1ec64db95dd90043d1d4
|
1.7 GB | Preview Download |
md5:13c19682915353a89b3d78b68ad0f18d
|
1.8 GB | Preview Download |
md5:4c7a5219504ccdf61abf7579803f4867
|
1.6 GB | Preview Download |
md5:23502099645a59e91a9dd407532e7f3c
|
270.3 kB | Download |
md5:d46930d11640c6612a670178cbc60a0f
|
303.1 kB | Download |
md5:3f27d27fe2745fa77a3f9128987c34cc
|
167.9 kB | Download |