Published September 18, 2024 | Version v1.3
Journal article Open

Spatio-temporal copper prospectivity in the American Cordillera predicted by positive-unlabelled machine learning – supplement

  • 1. The University of Sydney
  • 2. BHP

Description

Source data and code used to create training and test datasets for the machine learning models presented in the paper: Alfonso, C.P., Müller, R.D., Mather, B., Anthony, M. In prep. Spatio-temporal copper prospectivity in the American Cordillera predicted by positive-unlabelled machine learning.

Python notebooks and scripts can also be found in the GitHub repository.

Files

figures.zip

Files (7.3 GB)

Name Size Download all
md5:d3d025a0079ff3f090de575c0db90ba5
19.6 MB Preview Download
md5:811b3d43faa3928c53ff56a56b645dcb
8.3 MB Preview Download
md5:77c9843773f11fb6618c5b59fc212cd4
44.7 MB Preview Download
md5:03785c3715f1020d6cc4ba59bed9e452
917.7 MB Preview Download
md5:da580174ac11de930be8a98193acd783
21.8 MB Preview Download
md5:91551026b79162b644a2f6cb7b04bc4f
6.3 GB Preview Download
md5:9b5b3ebdb2bfc30c71e43ad94a3a00c6
1.9 MB Preview Download

Additional details

Dates

Updated
2024-09-18