Published March 17, 2024 | Version v1
Dataset Open

An interpretable and adaptive autoencoder for efficient tissue deconvolution

Description

 
 

An interpretable and adaptive autoencoder for efficient tissue deconvolution. 

 
Here we provide the 4 datasets used along the Sweetwater paper.  In order to reproduce the results and run Sweetwater with every dataset: 
  1. Call load_X.py, being X the dataset/subdataset used. e.g. for the PBMC GS, load_pbmc_gs_data.py
  2. This will return 4 elements: scRNA-seq, bulkRNA-seq, common_genes, bulkrna_props
    1. scRNA-seq: scRNA-seq reference expression matrix.
    2. bulkRNA-seq: bulkRNA-seq matrix to be deconvolved.
    3. common_genes: genes that both matrix have in common, hence defining the input size of the model.
    4. bulkrna_props: proportions of the bulkrna-seq matrix to be deconvolved.
  3. run python3 src/main.py with the path to both the scRNA-seq and bulkRNA-seq path. (see github readme)
  4. Get the deconvolved proportions. Afterwards, you can evaluate the performance using bulkrna_props.

Other

Raw files can be downloaded from GEO...

Files

README.md

Files (591.1 MB)

Name Size Download all
md5:30e71d9f295bbb047deb2fd4ebf4e3f2
221.7 MB Preview Download
md5:19759e20b0a9ff77d41790166763abfa
65.9 MB Preview Download
md5:44f528d84844f70f9975a801ffa1651f
161.9 MB Preview Download
md5:f027e87a3bd9f3bf3a8d64b8b71cbd03
141.6 MB Preview Download
md5:192e5f215f18d13dbdfada4f2c66e0ff
549 Bytes Preview Download

Additional details

Software

Repository URL
https://github.com/ML4BM-Lab/Sweetwater/tree/main
Programming language
Python