Published September 12, 2024 | Version v1
Dataset Open

NeurOST-SSH Maps for Ocean Data Challenge 2023a_SSH_mapping_OSE

  • 1. ROR icon University of Washington

Description

Global maps of sea surface height (SSH) and surface geostrophic currents generated using NeurOST, a deep learning for mapping SSH from nadir satellite altimetry and sea surface temperature, generated for the observing system experiment outlined in the Ocean Data Challenge '2023a_SSH_mapping_OSE'.

Ocean Data Challenge link: https://github.com/ocean-data-challenges/2023a_SSH_mapping_OSE/tree/main 

These maps were made using only L3 SSH (not including SST).

NeurOST citations:

  • Martin, S. A., Manucharyan, G. E., and Klein, P. (2024). Deep Learning Improves Global Satellite Observations of Ocean Eddy Dynamics. Geophysical Research Letters, 51, e2024GL110059. https://doi.org/10.1029/2024GL110059
  • Martin, S. A., Manucharyan, G. E., and Klein, P. (2023). Synthesizing Sea Surface Temperature and Satellite Altimetry Observations Using Deep Learning Improves the Accuracy and Resolution of Gridded Sea Surface Height Anomalies. Journal of Advances in Modeling Earth Systems, 15, e2022MS003589. https://doi.org/10.1029/2022MS003589

Files

NeurOST_SSH_allsat-alg.zip

Files (26.7 GB)

Name Size Download all
md5:3b078ee32ea990c000ac6c22c6d71c30
26.7 GB Preview Download

Additional details

References

  • Martin, S. A., Manucharyan, G. E., and Klein, P. (2024). Deep Learning Improves Global Satellite Observations of Ocean Eddy Dynamics. Geophysical Research Letters, 51, e2024GL110059. https://doi.org/10.1029/2024GL110059
  • Martin, S. A., Manucharyan, G. E., and Klein, P. (2023). Synthesizing Sea Surface Temperature and Satellite Altimetry Observations Using Deep Learning Improves the Accuracy and Resolution of Gridded Sea Surface Height Anomalies. Journal of Advances in Modeling Earth Systems, 15, e2022MS003589. https://doi.org/10.1029/2022MS003589