Published September 8, 2024 | Version v1
Report Open

UT-GOM2-2 Preliminary Report Terrebonne Basin Northern Gulf of Mexico

Description

In the summer and fall of 2023, the Gulf of Mexico Deepwater Hydrate Coring Expedition (UT-GOM2-2) drilled, cored, made downhole measurements, and analyzed samples from the seafloor to the base of the gas hydrate stability zone in one location (Site H, WR313) in the Terrebonne basin, deepwater Gulf of Mexico. This is the UT-GOM2-2 Preliminary Report.

Files

Expedition UT-GOM2-2 Preliminary Report compressed.pdf

Files (11.9 MB)

Additional details

References

  • Archie, G. E., 1942, The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of AIME, Volume 146, p. 4, https://doi.org/10.2118/942054-g.
  • ASTM International, 2017, ASTM D2487-17e1: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System): ASTM International, https://doi.org/10.1520/D2487-17E01.
  • Berner, R. A., and Raiswell, R., 1983, Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory: Geochimica et Cosmochimica Acta, v. 47, no. 5, p. 855-862, https://doi.org/10.1016/0016-7037(83)90151-5.
  • Bhandari, A. R., Cardona, A., Flemings, P. B., and Germaine, J. T., 2024, The geomechanical response of the Gulf of Mexico Green Canyon 955 reservoir to gas hydrate dissociation: A model based on sediment properties with and without gas hydrate: Marine and Petroleum Geology, v. 167, p. 107000, https://doi.org/https://doi.org/10.1016/j.marpetgeo.2024.107000.
  • Bhati, A., Kar, A., and Bahadur, V., 2024, Analysis of CO2 hydrate formation from flue gas mixtures in a bubble column reactor: Separation and Purification Technology, v. 330, https://doi.org/10.1016/j.seppur.2023.125261.
  • Biastoch, A., Treude, T., Rüpke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W., Latif, M., Böning, C. W., Madec, G., and Wallmann, K., 2011, Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification: Geophysical Research Letters, v. 38, no. 8, p. L08602, https://doi.org/10.1029/2011GL047222.
  • Borowski, W. S., Rodriguez, N. M., Paull, C. K., and Ussler, W., 2013, Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?: Marine and Petroleum Geology, v. 43, p. 381-395, https://doi.org/10.1016/j.marpetgeo.2012.12.009.
  • Boswell, R., 2009, Is gas hydrate energy within reach?: Science, v. 325, no. 5943, p. 957-958, https://doi.org/10.1126/science.1175074.
  • Boswell, R., and Collett, T. S., 2011, Current perspectives on gas hydrate resources: Energy & Environmental Science, v. 4, no. 4, p. 1206-1215, https://doi.org/10.1039/C0EE00203H.
  • Boswell, R., Collett, T. S., Frye, M., Shedd, W., McConnell, D. R., and Shelander, D., 2012a, Subsurface gas hydrates in the northern Gulf of Mexico: Marine and Petroleum Geology, v. 34, no. 1, p. 4-30, https://doi.org/10.1016/j.marpetgeo.2011.10.003.
  • Boswell, R., Frye, M., Shelander, D., Shedd, W., McConnell, D. R., and Cook, A., 2012b, Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico: Marine and Petroleum Geology, v. 34, no. 1, p. 134-149, https://doi.org/10.1016/j.marpetgeo.2011.08.010.
  • Boswell, R., Shipp, C., Reichel, T., Shelander, D., Saeki, T., Frye, M., Shedd, W., Collett, T. S., and McConnell, D. R., 2016, Prospecting for marine gas hydrate resources: Interpretation, v. 4, no. 1, p. SA13-SA24, https://doi.org/10.1190/int-2015-0036.1.
  • Boswell, R., Schoderbek, D., Collett, T. S., Ohtsuki, S., White, M., and Anderson, B. J., 2017, The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, Operations, and Implications for CO2–CH4 Exchange in Gas Hydrate Reservoirs: Energy & Fuels, v. 31, no. 1, p. 140-153, https://doi.org/10.1021/acs.energyfuels.6b01909.
  • Boswell, R., Myshakin, E., Moridis, G., Konno, Y., Collett, T. S., Reagan, M., Ajayi, T., and Seol, Y., 2019a, India National Gas Hydrate Program Expedition 02 summary of scientific results: Numerical simulation of reservoir response to depressurization: Marine and Petroleum Geology, v. 108, p. 154-166, https://doi.org/https://doi.org/10.1016/j.marpetgeo.2018.09.026.
  • Boswell, R., Yoneda, J., and Waite, W. F., 2019b, India National Gas Hydrate Program Expedition 02 summary of scientific results: Evaluation of natural gas-hydrate-bearing pressure cores: Marine and Petroleum Geology, v. 108, p. 143-153, https://doi.org/10.1016/j.marpetgeo.2018.10.020.
  • Boswell, R., Hancock, S., Yamamoto, K., Collett, T., Pratap, M., and Lee, S.-R., 2020, 6 - Natural Gas Hydrates: Status of Potential as an Energy Resource, in Letcher, T. M., ed., Future Energy (Third Edition), Elsevier, p. 111-131, https://doi.org/10.1016/B978-0-08-102886-5.00006-2.
  • Boudreau, B. P., Luo, Y., Meysman, F. J. R., Middelburg, J. J., and Dickens, G. R., 2015, Gas hydrate dissociation prolongs acidification of the Anthropocene oceans: Geophysical Research Letters, v. 42, no. 21, https://doi.org/10.1002/2015gl065779.
  • Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V., O'Brien, T. D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K., and Zweng, M. M., 2018, World Ocean Database 2018, NOAA Atlas NESDIS 87: Silver Spring, MD, NOAA, https://doi.org/10.7289/V5NZ85MT.
  • BSEE, 2024, BSEE Data Center, https://www.data.bsee.gov/.
  • Cardona, A., Bhandari, A. R., Heidari, M., and Flemings, P. B., 2023, The Viscoplastic Behavior of Natural Hydrate-Bearing Sandy-Silts Under Uniaxial Strain Compression (K0 Loading): Journal of Geophysical Research: Solid Earth, v. 128, no. 7, p. e2023JB026976, https://doi.org/10.1029/2023JB026976
  • Claypool, G. E., and Kvenvolden, K. A., 1983, Methane and Other Hydrocarbon Gases in Marine Sediment: Annual Review of Earth and Planetary Sciences, v. 11, no. Volume 11, 1983, p. 299-327, https://doi.org/10.1146/annurev.ea.11.050183.001503.
  • Collett, T. S., Boswell, R., Frye, M., Shedd, W., Godfriaux, P., Dufrene, R., McConnell, D., Mrozewski, S., Guerin, G., Cook, A., Jones, E., and Roy, R., 2009, Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Operational Summary: Proceedings of the Drilling and Scientific Results of the 2009 Gulf of Mexico Gas Hydrate Joint Industry Project Leg II, p. 27, https://netl.doe.gov/sites/default/files/netl-file/OpSum%5B1%5D.pdf.
  • Collett, T. S., Boswell, R., Frye, M., Shedd, W. W., Godfriaux, P. D., Dufrene, R. S., McConnell, D. R., Mrozewski, S., Guerin, G., Cook, A., Jones, E., and Roy, R., 2010, Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Logging-While-Drilling Operations and Challenges, Offshore Technology Conference, Offshore Technology Conference, https://doi.org/10.4043/20452-ms.
  • Cook, A. E., Anderson, B. I., Malinverno, A., Mrozemski, S., and Goldberg, D. S., 2010, Electrical anisotropy due to gas hydrate-filled fractures: Geophysics, v. 75, no. 6, p. 13, https://doi.org/10.1190/1.3506530.
  • Cook, A. E., Anderson, B. I., Rasmus, J., Sun, K., Li, Q., Collett, T. S., and Goldberg, D. S., 2012, Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico: Marine and Petroleum Geology, v. 34, no. 1, p. 72-84, https://doi.org/10.1016/j.marpetgeo.2011.09.003.
  • Cook, A. E., Goldberg, D. S., and Malinverno, A., 2014, Natural gas hydrates occupying fractures: A focus on non-vent sites on the Indian continental margin and the northern Gulf of Mexico: Marine and Petroleum Geology, v. 58, p. 278-291, https://doi.org/10.1016/j.marpetgeo.2014.04.013.
  • Cook, A. E., and Waite, W. F., 2018, Archie's Saturation Exponent for Natural Gas Hydrate in Coarse-Grained Reservoirs, v. 123, no. 3, p. 2069-2089, https://doi.org/10.1002/2017jb015138.
  • Darnell, K. N., Flemings, P. B., and DiCarlo, D., 2019, Nitrogen‐Driven Chromatographic Separation During Gas Injection Into Hydrate‐Bearing Sediments: Water Resources Research, https://doi.org/10.1029/2018wr023414.
  • Diegel, F. A., Karlo, J. F., Schuster, D. C., Shoup, R. C., and Tauvers, P. R., 1995, Cenozoic structural evolution and tectono-stratigraphic framework of the northern Gulf coast continental margin, in Jackson, M. P. A., Roberts, D. G., and Snelson, S., eds., Salt tectonics: a global perspective: AAPG Memoir 65, p. 109-151, https://doi.org/10.1306/M65604C6.
  • Eaton, B. A., 1969, Fracture gradient prediction and its application in oil field operations: Journal of Petroleum Technology, v. 21, no. 10, p. 1353-1360, https://doi.org/10.2118/2163-PA.
  • Fang, Y., Flemings, P. B., Daigle, H., Phillips, S. C., Meazell, P. K., and You, K., 2020, Petrophysical properties of the Green Canyon Block 955 hydrate reservoir inferred from reconstituted sediments: Implications for hydrate formation and production: AAPG Bulletin, v. 104, no. 9, p. 1997-2028, https://doi.org/10.1306/01062019165.
  • Flemings, P. B., Phillips, S. C., Pettigrew, T., and Green, T., 2016, GOM2 Pressure Coring Tool with Ball Valve (PCTB) Land Test Intitial Report, https://ig.utexas.edu/wp-content/uploads/2019/06/GOM2_PCTB_Land_Test_Initial_Report.pdf.
  • Flemings, P. B., Phillips, S. C., Collett, T. S., Cook, A. E., Boswell, R., and Scientists, U.-G.-E., 2018a, Proceedings of the UT-GOM2-1 Hydrate Pressure Coring Expedition: Austin, TX, University of Texas Institute for Geophysics, https://doi.org/10.2172/1646019.
  • Flemings, P. B., Phillips, S. C., Collett, T. S., Cook, A. E., Boswell, R., and Scientists, U.-G.-E., 2018b, UT-GOM2-1 Hydrate Pressure Coring Expedition Hole GC 955 H002, in Flemings, P. B., Phillips, S. C., Collett, T. S., Cook, A. E., and Boswell, R., eds., Proceedings of the UT-GOM2-1 Hydrate Pressure Coring Expedition: Austin, TX, University of Texas Institute for Geophysics, https://doi.org/10.2172/1648313.
  • Flemings, P. B., 2020, Phase 3 Report (Period ending 9/30/2019), Deepwater Methane Hydrate Characterization and Scientific Assessment, DOE Award No.: DE-FE0023919, https://www.osti.gov/servlets/purl/1615748.
  • Flemings, P. B., Pettigrew, T., Houghton, J., Phillips, S. C., Price, A., Murphy, Z., Fang, Y., and Santra, M., 2020a, GOM2 Pressure Coring Tool with Ball Valve (PCTB) Land Test II Report, https://ig.utexas.edu/wp-content/uploads/2020/08/PCTB_Land_Test_II_Report_wAppendices.pdf.
  • Flemings, P. B., Phillips, S. C., Boswell, R., Collett, T. S., Cook, A. E., Dong, T., Frye, M., Guerin, G., Goldberg, D. S., Holland, M., Jang, J., Meazell, K., Morrison, J., O'Connell, J., Pettigrew, T., Petrou, E., Polito, P. J., Portnov, A., Santra, M., Schultheiss, P. J., Seol, Y., Shedd, W., Solomon, E. A., Thomas, C. M., Waite, W. F., and You, K., 2020b, Pressure coring a Gulf of Mexico deep-water turbidite gas hydrate reservoir: Initial results from The University of Texas–Gulf of Mexico 2-1 (UT-GOM2-1) Hydrate Pressure Coring Expedition: AAPG Bulletin, v. 104, no. 9, p. 1847-1876, https://doi.org/10.1306/05212019052.
  • Flemings, P. B., 2021a, Phase 4 Report (Period ending 9/30/2020), Deepwater Methane Hydrate Characterization and Scientific Assessment, DOE Award No.: DE-FE0023919, https://www.osti.gov/servlets/purl/1768216.
  • Flemings, P. B., 2021b, A Concise Guide to Geopressure: Origin, Prediction, and Applications, Cambridge Press, https://doi.org/10.1017/9781107326309.
  • Flemings, P. B., Cook, A. E., Collett, T., and Boswell, R., 2022, Gas hydrates in Green Canyon Block 955, deep-water Gulf of Mexico: Part II, Insights and future challenges: AAPG Bulletin, v. 106, no. 5, p. 937-947, https://doi.org/10.1306/bltnintro030922.
  • Flemings, P. B., Thomas, C., Collett, T. S., Colwell, F., Cook, A. E., Germaine, J., Holland, M., Houghton, J., Johnson, J. E., Malinverno, A., Meazell, K., Pettigrew, T., Phillips, S. C., Portnov, A., Price, A., Santra, M., Schultheiss, P., Solomon, E., and You, K., 2023a, UT-GOM2-2 Prospectus: Science and Sample Distribution Plan V2.3, https://doi.org/10.5281/zenodo.13694088
  • Flemings, P. B., Cook, A. E., Houghton, J., Morrison, J., Portnov, A., Pettigrew, T., Phillips, S. C., Polito, P., Santra, M., and Thomas, C., 2023b, UT-GOM2-2 Operations Plan, https://ig.utexas.edu/wp-content/uploads/2023/06/OperationsPlan_Rev2.3.pdf.
  • Fofonoff, N., and Millard, R., 1983, Algorithms for Computation of Fundamental Properties of Seawater: UNESCO Tech. Pap. Mar. Sci., v. 44, https://doi.org/10.25607/OBP-1450.
  • Frye, M., Shedd, W., and Boswell, R., 2012, Gas hydrate resource potential in the Terrebonne Basin, Northern Gulf of Mexico: Marine and Petroleum Geology, v. 34, no. 1, p. 150-168, https://doi.org/10.1016/j.marpetgeo.2011.08.001.
  • Gebregiorgis, D., Giosan, L., Hathorne, E. C., Anand, P., Nilsson‐Kerr, K., Plass, A., Lückge, A., Clemens, S. C., and Frank, M., 2020, What Can We Learn From X‐Ray Fluorescence Core Scanning Data? A Paleomonsoon Case Study: Geochemistry, Geophysics, Geosystems, v. 21, no. 2, https://doi.org/10.1029/2019GC008414.
  • Goldberg, D. S., Kleinberg, R. L., Weinberger, J. L., Malinverno, A., McLellan, P. J., and Collett, T. S., 2010, 16. Evaluation of Natural Gas-Hydrate Systems Using Borehole Logs, Geophysical Characterization of Gas Hydrates, p. 239-261, https://doi.org/10.1190/1.9781560802197.ch16.
  • Gradstein, F., Ogg, J., Schmitz, M., and Ogg, G., 2012, Geologic Time Scale 2012 -- 2 volume book, https://www.sciencedirect.com/book/9780444594259/the-geologic-time-scale.
  • Guo, F., Clemens, S., Liu, X., Long, Y., Li, D., Tan, L., Liu, C., Yan, H., and Sun, Y., 2021, Application of XRF Scanning to Different Geological Archives: Earth and Space Science, v. 8, no. 9, https://doi.org/10.1029/2020EA001589.
  • Hillman, J. I. T., Cook, A. E., Daigle, H., Nole, M., Malinverno, A., Meazell, K., and Flemings, P. B., 2017a, Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico: Marine and Petroleum Geology, v. 86, p. 1357-1373, https://doi.org/10.1016/j.marpetgeo.2017.07.029.
  • Hillman, J. I. T., Cook, A. E., Sawyer, D. E., Küçük, H. M., and Goldberg, D. S., 2017b, The character and amplitude of 'discontinuous' bottom-simulating reflections in marine seismic data: Earth and Planetary Science Letters, v. 459, p. 157-169, https://doi.org/10.1016/j.epsl.2016.10.058.
  • Hutchinson, D. R., Shelander, D., Dai, J., McConnell, D., Shedd, W., Frye, M., Ruppel, C., Boswell, R., Jones, E., Collett, T., Rose, K., Dugan, B., Wood, W., and Latham, T., Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico, in Proceedings 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6-10 2008, https://netl.doe.gov/sites/default/files/2018-12/ICGH_5506_1_41330_0.pdf.
  • IODP Depth Scale Task Force, 2011, IODP Depth Scale Terminology, https://www.iodp.org/policies-and-guidelines/142-iodp-depth-scales-terminology-april-2011/file.
  • Isson, T. T., Planavsky, N. J., Coogan, L. A., Stewart, E. M., Ague, J. J., Bolton, E. W., Zhang, S., McKenzie, N. R., and Kump, L. R., 2020, Evolution of the Global Carbon Cycle and Climate Regulation on Earth: Global Biogeochemical Cycles, v. 34, no. 2, p. e2018GB006061, https://doi.org/10.1029/2018GB006061.
  • Johnson, J. E., Phillips, S. C., Clyde, W. C., Giosan, L., and Torres, M. E., 2021, Isolating Detrital and Diagenetic Signals in Magnetic Susceptibility Records From Methane‐Bearing Marine Sediments: Geochemistry, Geophysics, Geosystems, v. 22, no. 9, https://doi.org/10.1029/2021gc009867.
  • Kayen, R. E., and Lee, H. J., 1991, Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort margin: Marine Geotechnology, v. 10, https://doi.org/10.1080/10641199109379886.
  • Kennett, J. P., Cannariato, K. G., Hendy, I. L., and Behl, R. J., 2000, Carbon Isotopic Evidence for Methane Hydrate Instability During Quaternary Interstadials: Science, v. 288, no. 5463, p. 128-133, https://doi.org/10.1126/science.288.5463.128.
  • Kida, M., Jin, Y., Watanabe, M., Konno, Y., Yoneda, J., Egawa, K., Ito, T., Nakatsuka, Y., Suzuki, K., Fujii, T., and Nagao, J., 2015, Chemical and crystallographic characterizations of natural gas hydrates recovered from a production test site in the eastern Nankai Trough: Marine and Petroleum Geology, v. 66, p. 396-403, https://doi.org/10.1016/j.marpetgeo.2015.02.019.
  • Kramer, K., and Shedd, W., 2017, A 1.4-Billion-Pixel Map of the Gulf of Mexico Seafloor: Eos, https://doi.org/10.1029/2017EO073557.
  • Kvenvolden, K. A., 2012, Methane hydrates and global climate: Global Biogeochemical Cycles, v. 2, no. 3, p. 221-229, https://doi.org/10.1029/GB002i003p00221.
  • Lorenson, T. D., and Collett, T. S., 2018, National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry: Marine and Petroleum Geology, v. 92, p. 477-492, https://doi.org/10.1016/j.marpetgeo.2017.11.011.
  • Malinverno, A., and Goldberg, D. S., 2015, Testing short-range migration of microbial methane as a hydrate formation mechanism: Results from Andaman Sea and Kumano Basin drill sites and global implications: Earth and Planetary Science Letters, v. 422, p. 105-114, https://doi.org/10.1016/j.epsl.2015.04.019.
  • McConnell, D., and Zhang, Z., 2005, Using acoustic inversion to image buried gas hydrate distribution: Fire in the Ice, v. 5, no. 4, p. 3-5, https://netl.doe.gov/sites/default/files/publication/HMNewsFall05_HighRez.pdf.
  • McConnell, D. R., and Kendall, B. A., 2002, Images of the Base of Gas Hydrate Stability, Northwest Walker Ridge, Gulf of Mexico, Offshore Technology Conference: Houston, Texas, https://doi.org/10.4043/14103-ms.
  • Meazell, K., Flemings, P. B., Santra, M., and Johnson, J. E., 2020, Sedimentology and stratigraphy of a deep-water gas hydrate reservoir in the northern Gulf of Mexico: AAPG Bulletin, v. 104, no. 9, p. 1945-1969, https://doi.org/10.1306/05212019027.
  • Mienert, J., Vanneste, M., Bünz, S., Andreassen, K., Haflidason, H., and Sejrup, H. P., 2005, Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide: Marine and Petroleum Geology, v. 22, no. 1-2, p. 233-244, https://doi.org/10.1016/j.marpetgeo.2004.10.018.
  • Milkov, A. V., 2004, Global estimates of hydrate-bound gas in marine sediments: how much is really out there?: Earth-Science Reviews, v. 66, no. 3–4, p. 183-197, https://doi.org/10.1016/j.earscirev.2003.11.002.
  • Moridis, G., Kowalsky, M. B., and Pruess, K., 2012, TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media, Lawrence Berkeley National Laboratory, https://escholarship.org/uc/item/3mk82656.
  • Ogg, J. G., Ogg, G. M., and Gradstein, F. M., 2016, A Concise Geologic Time Scale, Elsevier, 240 p, https://doi.org/10.1016/C2009-0-64442-1.
  • Peketi, A., Joshi, R. K., Patil, D., Rao, P., and Dayal, A., 2012, Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics: Geochemistry, Geophysics, Geosystems, v. 13, https://doi.org/10.1029/2012GC004288.
  • Pohlman, J. W., Kaneko, M., Heuer, V. B., Coffin, R. B., and Whiticar, M., 2009, Methane sources and production in the northern Cascadia margin gas hydrate system: Earth and Planetary Science Letters, v. 287, no. 3–4, p. 504-512, https://doi.org/doi:10.1016/j.epsl.2009.08.037.
  • Portnov, A., Flemings, P. B., You, K., Meazell, K., Hudec, M. R., and Dunlap, D. B., 2023, Low temperature and high pressure dramatically thicken the gas hydrate stability zone in rapidly formed sedimentary basins: Marine and Petroleum Geology, v. 158, p. 106550, https://doi.org/10.1016/j.marpetgeo.2023.106550.
  • Prather, B. E., Booth, J. R., Steffens, G. S., and Craig, P. A., 1998, Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico: AAPG Bulletin, v. 82, no. 5, p. 701-728, https://doi.org/10.1306/1D9BC5D9-172D-11D7-8645000102C1865D.
  • Price, A., Flemings, P., Thomas, C., Cardona, A., Murphy, Z., Garcia, A., Savage, A., Houghton, J., and Pettigrew, T., 2021, GOM2 Pressure Coring Tool with Ball Valve (PCTB Land Test III Report, https://ig.utexas.edu/wp-content/uploads/2021/07/PCTB_Land_Test_III_UT_06.17.21-shrunk.pdf.
  • Reeburgh, W. S., 2007, Oceanic methane biogeochemistry: Chem. Rev., v. 107, p. 486-513, https://doi.org/10.1021/cr050362v.
  • Ruppel, C. D., and Kessler, J. D., 2017, The interaction of climate change and methane hydrates: Reviews of Geophysics, v. 55, no. 1, p. 126-168, https://doi.org/10.1002/2016RG000534.
  • Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A., 2008, Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle: BioScience, v. 58, no. 8, p. 701-714, https://doi.org/10.1641/b580807.
  • Shedd, W., Frye, M., Godfriaux, P., Dufrene, R., McConnell, D., Boswell, R., Collett, T., Mrozewski, S., Guerin, G., Cook, A., Shelander, D., and Dai, J., 2010, Gulf of Mexico Gas Hydrates Joint Industry Project Leg II: Results from the Walker Ridge 313 Site, Offshore Technology Conference, https://doi.org/10.4043/20806-MS.
  • Shedd, W., Boswell, R., Frye, M., Godfriaux, P., and Kramer, K., 2012, Occurrence and nature of "bottom simulating reflectors" in the northern Gulf of Mexico: Marine and Petroleum Geology, v. 34, no. 1, p. 31-40, https://doi.org/10.1016/j.marpetgeo.2011.08.005.
  • Shepard, F. P., 1954, Nomenclature based on sand-silt-clay ratios: Journal of Sedimentary Petrology, v. Vol. 24, p. 151-158, https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D.
  • Sloan, E. D., and Koh, C. A., 2007, Clathrate Hydrates of Natural Gases, Boca Raton, FL, CRC Press, https://doi.org/10.1201/9781420008494.
  • Suits, N. S., and Arthur, M. A., 2000, Sulfur diagenesis and partitioning in Holocene Peru shelf and upper slope sediments: Chemical Geology, v. 163, no. 1, p. 219-234, https://doi.org/10.1016/S0009-2541(99)00114-X.
  • Tsuji, Y., Ishida, H., Nakamizu, M., Matsumoto, R., and Shimizu, S., 2004, Overview of the MITI Nankai Trough Wells: A Milestone in the Evaluation of Methane Hydrate Resources, v. 54, no. 1, p. 3-10, https://doi.org/10.1111/j.1751-3928.2004.tb00182.x.
  • Varona, G. M., Flemings, P. B., and Portnov, A., 2023, Hydrate-bearing sands record the transition from ponded deposition to bypass in the deep-water Gulf of Mexico.: Marine and Petroleum Geology, v. 151, no. JMPG_106172, https://doi.org/10.1016/j.marpetgeo.2023.106172.
  • Waterman, A. S., Weber, R. D., Lu, Y., Smith, V. E., George, R. A., Reilly, T. M., Roederer, R. V., Edmunds, J. A., Parker, B. W., Myers, N. R., and Avery, A. J., 2017, Biostratigraphic Chart - Gulf Basin, USA, Quaternary and Neogene: Paleo-Data, Inc., https://www.paleodata.com/chart/.
  • Wei, L., Malinverno, A., Colwell, F., and Goldberg, D. S., 2024, Reactive transport modeling of organic carbon degradation in marine methane hydrate systems: Scientific Reports, v. 14, no. 1, p. 2837, https://doi.org/10.1038/s41598-024-52957-w.
  • Wen, B., Aydin, A., and Duzgoren-Aydin, N. S., 2002, A comparative study of particle size analyses by sieve-hydrometer and laser diffraction methods: Geotechnical Testing Journal, v. 25, no. 4, https://doi.org/10.1520/GTJ11289J.
  • Yamamoto, K., 2015, Overview and introduction: Pressure core-sampling and analyses in the 2012–2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough: Marine and Petroleum Geology, v. 66, p. 296-309, https://doi.org/10.1016/j.marpetgeo.2015.02.024.
  • Yin, Z., and Linga, P., 2019, Methane hydrates: A future clean energy resource: Chinese Journal of Chemical Engineering, https://doi.org/10.1016/j.cjche.2019.01.005.
  • Yoneda, J., Jin, Y., Muraoka, M., Oshima, M., Suzuki, K., Walker, M., Otsuki, S., Kumagai, K., Collett, T. S., Boswell, R., and Okinaka, N., 2021, Multiple physical properties of gas hydrate-bearing sediments recovered from Alaska North Slope 2018 Hydrate-01 Stratigraphic Test Well: Marine and Petroleum Geology, v. 123, p. 104748, https://doi.org/10.1016/j.marpetgeo.2020.104748.
  • You, K., Flemings, P. B., Malinverno, A., Collett, T. S., and Darnell, K., 2019, Mechanisms of Methane Hydrate Formation in Geological Systems: Reviews of Geophysics, v. 57, no. 4, p. 1146-1196, https://doi.org/10.1029/2018rg000638.
  • Zhang, K., Moridis, G., and Pruess, K., 2011, TOUGH+CO2: A multiphase fluid-flow simulator for CO2 geologic sequestration in saline aquifers: Computers & Geosciences, v. 37, no. 6, p. 714-723, https://doi.org/10.1016/j.cageo.2010.09.011.
  • Zheng, J., Chong, Z. R., Qureshi, M. F., and Linga, P., 2020, Carbon Dioxide Sequestration via Gas Hydrates: A Potential Pathway toward Decarbonization: Energy & Fuels, v. 34, no. 9, p. 10529-10546, https://doi.org/10.1021/acs.energyfuels.0c02309.