Published August 30, 2024 | Version v1
Journal article Open

Leveraging Reviewer Experience in Code Review Comment Generation

Description

Leveraging Reviewer Experience in Code Review Comment Generation

(Replication Package)

This is the replication package for journal paper "Leveraging Reviewer Experience in Code Review Comment Generation".

Authors

  1. Hong Yi Lin (University of Melbourne)
  2. Patanamon Thongtanunam (University of Melbourne)
  3. Christoph Treude (Singapore Management University)
  4. Michael Godfrey (University of Waterloo)
  5. Chunhua Liu (University of Melbourne)
  6. Wachiraphan Charoenwet (University of Melbourne)

List of Contents

  • Manual_Evaluation 
    • Accuracy annotations
    • Informativeness annotations
    • Comment category annotations
    • Manual annotation guidelines
    • 100 random samples
  • ELF_AVG 
    •  Model checkpoints for ELF_AVG strategy (Repository, Subsystem, Package)
  • ELF_ACO 
    • Model checkpoints for ELF_ACO strategy (Repository, Subsystem, Package)
  • ELF_MAX 
    • Model checkpoints for ELF_MAX strategy (Repository, Subsystem, Package)
  • ELF_RSO
    • Model checkpoints for ELF_RSO strategy (Repository, Subsystem, Package)
  • Oversampling
    • Model checkpoints for Experience-Aware Oversampling (Repository)
  • CodeReviewer
    • Model checkpoints for the original CodeReviewer (Fine-tuned on our dataset)
  • Predictions
    • All model generated predictions for test set
  • Repository_History
    • Pull request and commit histories for all repositories in training, validation and test set
  • Code_Review_Dataset_Tagged
    • Cleaned training, validation and test set including tagged ownership ratios
  • Top10_B4_Delta
    • Top 10 generations for each ELF model vs CodeReviewer in terms of BLEU-4
  • ELF_Code
    • Fine-tuning and testing scripts for ELF (Adapted from CodeReviewer)

 

 

Files

Code_Review_Dataset_Tagged.zip

Files (43.8 GB)

Name Size Download all
md5:ea6833af18001ddfbd43e7695401fe6d
1.1 GB Preview Download
md5:559f5de379736cc3fbeba5fc740d9f99
2.4 GB Preview Download
md5:fa25b9330f00f10ca476f91d4bf92e94
7.4 GB Preview Download
md5:481dabf4c9bfe5cd9e85fc34cb19f76b
7.3 GB Preview Download
md5:7e813b7eb261bd69578eee5ff95df053
1.7 GB Preview Download
md5:d9debcc2294db14e864e47c4a3608ba8
7.3 GB Preview Download
md5:bb768d9373c81f52f242644676d052c3
7.3 GB Preview Download
md5:4250e8aaa17fde824926e32950c75bfc
1.2 MB Preview Download
md5:ecab98afa412f7b3d8243aa94ab962d7
7.3 GB Preview Download
md5:dddc4688cd2d8beaaa567f7040637bba
4.8 MB Preview Download
md5:43e2e3be3de11b7f2b47e4f502222321
1.8 GB Preview Download
md5:a9da18068c401fefc0e9420901c26dcb
697.8 kB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.5281/zenodo.6900648 (DOI)

Funding

Discovery Early Career Researcher Award - Grant ID: DE210101091 DE210101091
Australian Research Council