Published August 27, 2024 | Version v1
Journal article Open

Monitoring of the radioactivity in the marine environment: a White Paper - Part I

  • 1. National and Kapodistrian University of Athens, Athens, Greece

Description

Radioactivity in the marine environment, although present since the Earth's formation, is comparatively understudied in contrast to aerial and terrestrial environments. A thorough examination of the radioactivity levels in aquatic environments can establish a robust foundation for comprehending various geochemical processes and phenomena within the water column and near the seabed, and as a result estimate the impact of radioactivity on local ecosystems. To achieve this objective, in-situ, long-term, and continuous monitoring is required. The present part I of the white paper highlights the fundamentals of marine radioactivity, describes the main objectives of an ambitious EU-funded project (RAMONES: Radioactivity Monitoring in Ocean Ecosystems) and introduces the innovative aspects of the technology developed as novel solutions to open problems.

Files

NUCET_article_133710.pdf

Files (1.7 MB)

Name Size Download all
md5:4da7d3f6f366961cd6a2354deaa6dfad
1.6 MB Preview Download
md5:669e23c7d519b1f792b0db5bcda359f5
69.8 kB Preview Download

Additional details

References

  • Byun J-I, Choi S-W, Song M-H, Chang B-U, Kim Y-J, Yun J-Y (2020) A large buoy-based radioactivity monitoring system for gamma-ray emitters in surface seawater. Applied Radiation and Isotopes 162: 109172. https://doi.org/10.1016/j.apradiso.2020.109172
  • Cao Z, Sun Z, Zhou F, Li B, Cao P, An Q (2020) Design of a Prototype in-situ Gamma-ray Spectrometer for Deep Sea. Journal of Instrumentation 15: P11029. https://doi.org/10.1088/1748-0221/15/11/P11029
  • CEA (2014) Radioactivity. De la recherche à l'industrie.
  • Del Sordo S, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P (2009) Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors 9: 3491–3526. https://doi.org/10.3390/s90503491
  • Dou D, Zeng Z, Yu W, Zeng M, Men W, Lin F, Ma H, Cheng J, Li J (2021) In-Situ Seawater Gamma Spectrometry with LaBr3 Detector at a Nuclear Power Plant Outlet. Journal of Marine Science and Engineering 9(7): 721. https://doi.org/10.3390/jmse9070721
  • European Commission (2003) Effluent and dose control from European Union NORM industries – Assessment of current situation and proposal for a harmonised Community approach – Volume 1, main report. Publications Office.
  • IAEA (1985) TECDOC-329.
  • IAEA (2024) International Atomic Energy Agency. https://www.iaea.org/
  • Jones EJW (1989) Radioactivity of the ocean floor and marine phosphorite deposits: Observations with a new deep-towed scintillometer. Geophysical Research Letters 16: 123–126. https://doi.org/10.1029/GL016i002p00123
  • Krane KS (1988) Introductory Nuclear Physics. 2nd edn., USA, John Wiley & Sons Inc.
  • Lee S, Park J, Lee JS, Seo H, Ko GB, Seo J-M, Kim SM (2023) Comparative study on gamma-ray detectors for in-situ ocean radiation monitoring system. Applied Radiation and Isotopes 197: 110826. https://doi.org/10.1016/j.apradiso.2023.110826
  • Lee S, Lee JS, Kim HS, Park J, Baek S, Song Y, Seo J-M, Kim SM (2020) In-situ remotely controllable ocean radiation monitoring system. Journal of Instrumentation 15: P06027–P06027. https://doi.org/10.1088/1748-0221/15/06/p06027
  • Livingston HD, Povinec PP (2000) Anthropogenic marine radioactivity. Ocean & Coastal Management 43: 689–712. https://doi.org/10.1016/S0964-5691(00)00054-5
  • Lozeva R, Gerl J, Georgiev G, Mertzimekis TJ (2019) gSPEC. Hyperfine Interact 240: 55. https://doi.org/10.1007/s10751-019-1596-5
  • Naumenko A, Andrukhovich S, Kabanov V, Kabanau D, Kurochkin Y, Martsynkevich B, Shoukavy D, Shpak P (2018) Autonomous NaI(Tl) gamma-ray spectrometer for in situ underwater measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 908: 97–109. https://doi.org/10.1016/j.nima.2018.08.001
  • Povinec PP, Osvath I, Baxter MS (1996) Underwater gamma-spectrometry with HPGe and NaI(Tl) detectors. Applied Radiation and Isotopes 47: 1127–1133. https://doi.org/10.1016/S0969-8043(96)00118-2
  • Su G, Zeng Z, Cheng J (2011) Monte Carlo simulation of in situ LaBr gamma-ray spectrometer for marine environmental monitoring. Radiation Protection Dosimetry 146: 103–106. https://doi.org/10.1093/rpd/ncr122
  • Toyoda S, Banerjee D, Kumagai H, Miyazaki J, Ishibashi J, Mochizuki N, Kojima S (2015) Gamma ray doses in water around sea floor hydrothermal area in the Southern Mariana Trough. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept, 603–606. https://doi.org/10.1007/978-4-431-54865-2_46
  • Tsabaris C, Bagatelas C, Dakladas T, Papadopoulos CT, Vlastou R, Chronis GT (2008) An autonomous in situ detection system for radioactivity measurements in the marine environment. Applied Radiation and Isotopes 66: 1419–1426. https://doi.org/10.1016/j.apradiso.2008.02.064
  • Tsabaris C, Androulakaki EG, Prospathopoulos A, Alexakis S, Eleftheriou G, Patiris DL, Pappa FK, Sarantakos K, Kokkoris M, Vlastou R (2019) Development and optimization of an underwater in-situ cerium bromide spectrometer for radioactivity measurements in the aquatic environment. Journal of Environmental Radioactivity 204: 12–20. https://doi.org/10.1016/j.jenvrad.2019.03.021
  • Vives i Batlle J (2012) Radioactivity in the Marine Environment. In: Meyers RA (Ed.) Encyclopedia of Sustainability Science and Technology. Springer New York, New York, NY, 8387–8425. https://doi.org/10.1007/978-1-4419-0851-3_880
  • Wikipedia (2024) Wikipedia. https://www.wikipedia.org/
  • Zeng Z, Pan X, Ma H, He J, Cang J, Zeng M, Mi Y, Cheng J (2017) Optimization of an underwater in-situ LaBr3:Ce spectrometer with energy self-calibration and efficiency calibration. Applied Radiation and Isotopes 121: 101–108. https://doi.org/10.1016/j.apradiso.2016.12.016
  • Zhang Y, Wu B, Liu D, Zhang Y, Cheng Y (2018) Development and deployment of an autonomous sensor for the in-situ radioactivity measurement in the marine environment. Applied Radiation and Isotopes 142: 181–186. https://doi.org/10.1016/j.apradiso.2018.10.004
  • Zhou Z, Feng C, Zhao M, Wang X, Li L, Jiang Z, Wang Y, Yuan J, Cao P, An Q (2022) A CdZnTe-based high-resolution gamma spectrometer for in-situ measurement in the marine environment. Journal of Instrumentation 17: P10020. https://doi.org/10.1088/1748-0221/17/10/P10020