Published August 21, 2024 | Version v1
Journal article Open

Bog bacterial community: data from north-western Russia

  • 1. N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia
  • 2. Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia

Description

Wetlands occupy up to 35% of the boreal biome in Russia, according to various estimates. Boreal bogs are global carbon sinks, accounting for more than 65% of the soil carbon stored in the wetland ecosystems of the world. The decomposition of plant residues is one of the most important components of the carbon cycle in wetland systems, while the violation of their fragile balance due to climate change increases the rate of mineralisation of organic matter and releases large amounts of carbon to the atmosphere. The biochemical processes occurring in a peat deposit determine the intensity of the destruction of organic matter and gas exchange. However, the microbial communities of the boreal ombrotrophic bogs, regulating those processes, are poorly studied.

Hence, a study of the prokaryote communities of the peat deposits of the southern White Sea coastal ombrotrophic bogs (mostly spread in north-western Russia) was carried out. The taxonomic composition of archaea and bacteria sampled from the deposit's depth of 0–310 cm was studied using high-throughput sequencing of V4 sites of 16S rRNA gene by Illumina technology. As a result, 105 species belonging to 19 phylums were identified. The dominant specific phyla were Pseudomonadota, Acidobacteriota and Verrucomicrobiota, the non-specific phylum being Desulfobacterota. Various groups of methanogenic, methylotrophic and nitrogen-fixing microorganisms were identified. Shannon's biodiversity ranged from 3.5 to 4.6 and ChaO1 - from 232 to 351, decreasing within the depth.

Files

BDJ_article_118448.pdf

Files (587.2 kB)

Name Size Download all
md5:a80ecea28ea3e38918090e19fb76932e
587.2 kB Preview Download

System files (113.6 kB)

Name Size Download all
md5:bc6179d31f04c91f110c130e1eb83c63
113.6 kB Download

Linked records

Additional details

References

  • Apkin R (2021) Wetlands as a natural frontier. Journal of Frontier Studies 6 (1): 226‑241. https://doi.org/10.46539/jfs.v6i1.280
  • Astashkina AP (2015) Analysis of the microflora of water and air: methodical instructions for the implementation of laboratory work on disciplines «Microbiology», «Pharmacology, biochemistry, microbiology» and «Biotechnology» for students of IPR, IFVT full-time education. Tomsk Polytechnic University editorial house, Tomsk, 25 pp. [In In Russian].
  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2010) Examining the global distribution of dominant archaeal populations in soil. The ISME Journal 5 (5): 908‑917. https://doi.org/10.1038/ismej.2010.171
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13 (7): 581‑583. https://doi.org/10.1038/nmeth.3869
  • Dedysh S, Pankratov T, Belova S, Kulichevskaya I, Liesack W (2006) Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Applied and Environmental Microbiology 72 (3): 2110‑2117. https://doi.org/10.1128/aem.72.3.2110-2117.2006
  • Dedysh SN, Ivanova AA (2018) Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions. FEMS Microbiology Ecology 95 (2). https://doi.org/10.1093/femsec/fiy227
  • Dobrovol'skaya TG, Golovchenko AV, Kukharenko OS, Yakushev AV, Semenova TA, Inisheva LA (2012) The structure of the microbial communities in low-moor and high-moor peat bogs of Tomsk oblast. Eurasian Soil Science 45 (3): 273‑281. https://doi.org/10.1134/s1064229312030039
  • Dobrovol'skaya TG, Golovchenko AV, Yurchenko EN, Kostina NV (2019) Composition of bacterial communities of the main types of bog plants. Moscow University Soil Science Bulletin 74 (1): 40‑43. https://doi.org/10.3103/s0147687419010046
  • Drzymulska D (2016) Peat decomposition – shaping factors, significance in environmental studies and methods of determination; a literature review. Geologos 22 (1): 61‑69. https://doi.org/10.1515/logos-2016-0005
  • Høj L, Olsen RA, Torsvik VL (2005) Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiology Ecology 53 (1): 89‑101. https://doi.org/10.1016/j.femsec.2005.01.004
  • Ipatov VS, Kirikova LA (1997) Phytocenology textbook. Publishing House of St. Petersburg University, St. Petersburg, 316 pp. [In In Russian].
  • Isanapong J, Goodwin L, Bruce D, Chen A, Detter C, Han J, Han CS, Held B, Huntemann M, Ivanova N, Land ML, Mavromatis K, Nolan M, Pati A, Pennacchio L, Pitluck S, Szeto E, Tapia R, Woyke T, Rodrigues JLM (2012) High-quality draft genome sequence of the Opitutaceae bacterium strain TAV1, a symbiont of the wood-feeding termite Reticulitermes flavipes. Journal of Bacteriology 194 (10): 2744‑2745. https://doi.org/10.1128/jb.00264-12
  • Kayani MuR, Zaidi SSA, Feng R, Yu K, Qiu Y, Yu X, Chen L, Huang L (2022) Genome-resolved characterization of structure and potential functions of the zebrafish stool microbiome. Frontiers in Cellular and Infection Microbiology 12 https://doi.org/10.3389/fcimb.2022.910766
  • Kers JG, Saccenti E (2022) The power of microbiome studies: Some considerations on which alpha and beta metrics to use and how to report results. Frontiers in Microbiology 12 https://doi.org/10.3389/fmicb.2021.796025
  • Kimoto K, Aizawa T, Urai M, Bao Ve N, Suzuki K, Nakajima M, Sunairi M (2010) Acidocella aluminiidurans sp. nov., an aluminium-tolerant bacterium isolated from Panicum repens grown in a highly acidic swamp in actual acid sulfate soil area of Vietnam. International Journal of Systematic and Evolutionary Microbiology 60 (4): 764‑768. https://doi.org/10.1099/ijs.0.011569-0
  • Lin X, Tfaily M, Steinweg JM, Chanton P, Esson K, Yang Z, Chanton J, Cooper W, Schadt C, Kostka J (2014) Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology 80 (11): 3518‑3530. https://doi.org/10.1128/aem.00205-14
  • Männistö M, Rawat S, Starovoytov V, Häggblom M (2012) Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. International Journal of Systematic and Evolutionary Microbiology 62: 2097‑2106. https://doi.org/10.1099/ijs.0.031864-0
  • Marusenko Y, Bates ST, Anderson I, Johnson SL, Soule T, Garcia-Pichel F (2013) Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecological Processes 2 (1). https://doi.org/10.1186/2192-1709-2-9
  • Mauquoy D, Hughes PD, Van Geel BA (2010) protocol for plant macrofossil analysis of peat deposits. Mires and Peat 7 (6): 1‑5.
  • Moore E, Villanueva L, Hopmans E, Rijpstra WIC, Mets A, Dedysh S, Sinninghe Damsté J (2015) Abundant trimethylornithine lipids and specific gene sequences are indicative of planctomycete Importance at the oxic/anoxic interface in Sphagnum-dominated northern wetlands. Applied and Environmental Microbiology 81 (18): 6333‑6344. https://doi.org/10.1128/aem.00324-15
  • Nikitin DA, Semenov MV, Chernov TI, Ksenofontova NA, Zhelezova AD, Ivanova EA, Khitrov NB, Stepanov AL (2022) Microbiological indicators of soil ecological functions: A review. Eurasian Soil Science 55 (2): 221‑234. https://doi.org/10.1134/s1064229322020090
  • Pankratov T, Ivanova A, Dedysh S, Liesack W (2011) Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environmental Microbiology 13 (7): 1800‑1814. https://doi.org/10.1111/j.1462-2920.2011.02491.x
  • Parfenova LN, Selyanina SB, Trufanova MV, Bogolitsyn KG, Orlov AS, Volkova NN, Ponomareva TI, Sokolova TV (2016) Influence of climatic and hydrological factors on structure and composition of peat from northern wetland territories with low anthropogenic impact. Science of The Total Environment108‑115. https://doi.org/10.1016/j.scitotenv.2016.01.204
  • Pheng S, Lee JJ, Eom MK, Lee KH, Kim S (2017) Paucibacter oligotrophus sp. nov., isolated from fresh water, and emended description of the genus Paucibacter. International Journal of Systematic and Evolutionary Microbiology 67 (7): 2231‑2235. https://doi.org/10.1099/ijsem.0.001931
  • Pinaev A, Kichko A, Aksenova T, Safronova V, Kozhenkova E, Andronov E (2022) RIAM: A universal accessible protocol for the isolation of high purity DNA from various soils and other humic substances. Methods and Protocols 5 (6). https://doi.org/10.3390/mps5060099
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41 https://doi.org/10.1093/nar/gks1219
  • Quatrini R, Johnson DB (2018) Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Current Opinion in Microbiology 43: 139‑147. https://doi.org/10.1016/j.mib.2018.01.011
  • Rapala J, Berg K, Lyra C, Niemi RM, Manz W, Suomalainen S, Paulin L, Lahti K (2005) Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. International Journal of Systematic and Evolutionary Microbiology 55 (4): 1563‑1568. https://doi.org/10.1099/ijs.0.63599-0
  • Serkebaeva Y, Kim Y, Liesack W, Dedysh S (2013) Pyrosequencing-based assessment of the bacteria diversity in Surface and subsurface peat layers of a Northern Wetland, with focus on poorly studied phyla and candidate divisions. PLOS One 8 (5). https://doi.org/10.1371/journal.pone.0063994
  • Sokolov OM (2000) Peat resources of the Arkhangelsk region and their use. Publishing House of Arkhangelsk State Technical University, Arkhangelsk.
  • Strous M, Fuerst J, Kramer EM, Logemann S, Muyzer G, van de Pas-Schoonen K, Webb R, Kuenen JG, Jetten MM (1999) Missing lithotroph identified as new planctomycete. Nature 400 (6743): 446‑449. https://doi.org/10.1038/22749
  • Van Landschoot A, DE LEY J (1983) Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.) and some other Gram-negative bacteria. Microbiology 129 (10): 3057‑3074. https://doi.org/10.1099/00221287-129-10-3057
  • van Passel MJ, Kant R, Palva A, Copeland A, Lucas S, Lapidus A, Glavina del Rio T, Pitluck S, Goltsman E, Clum A, Sun H, Schmutz J, Larimer F, Land M, Hauser L, Kyrpides N, Mikhailova N, Richardson PP, Janssen P, de Vos W, Smidt H (2011) Genome sequence of the Verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems. Journal of Bacteriology 193 (9): 2367‑2368. https://doi.org/10.1128/jb.00228-11
  • Volkova EM, Akatova EV, Dubinin NS (2022) Microbiological activity of peats of different genesis. Izvestia of the State University of Tula, 65 pp.
  • Vompersky SE, Sirin AA, Sal'nikov AA, Tsyganova OP, Valyaeva NA (2012) Estimation of forest cover extent over peatlands and paludified shallow-peat lands in Russia. Contemporary Problems of Ecology 4 (7): 734‑741. https://doi.org/10.1134/s1995425511070058
  • Wieder R, Vitt H (2006) Boreal peatland ecosystems. Ecological Studies https://doi.org/10.1007/978-3-540-31913-9
  • Wright ES (2016) Using DECIPHER v2.0 to analyze big biological sequence data in R. R Journal 8 (1).
  • Xia Y, Sun J (2023) Alpha Diversity. Bioinformatic and Statistical Analysis of Microbiome Data289‑333. https://doi.org/10.1007/978-3-031-21391-5_9
  • Yu W, Du Z, Chang Y, Mu D, Du Z (2020) Marinomonas agarivorans sp. nov., an agar-degrading marine bacterium isolated from red algae. International Journal of Systematic and Evolutionary Microbiology 70 (1): 100‑104. https://doi.org/10.1099/ijsem.0.003723
  • Zubov IN, Orlov AS, Selyanina SB, Zabelina SA, Ponomareva TI (2022) Redox potential and acidity of peat are key diagnostic physicochemical properties for the stratigraphic zones of a boreal raised bog. Mires and Peat 28 (5). https://doi.org/10.19189/MaP.2020.GDC.StA.1987
  • Zvyagintsev DG, Aseeva IN, Babyeva IP, Mirchink TG (1991) Methods of soil microbiology and biochemistry. MSU Publishing House, Moscow, 224 pp.