Published August 16, 2024 | Version v1
Journal article Open

Diversity in body size, bioacoustic traits, and cuticular hydrocarbon profiles in Isophya autumnalis populations

  • 1. Ordu University, Ordu, Turkiye

Description

This study investigates the variations in body size, bioacoustic traits, and cuticular hydrocarbon (CHC) profiles in different populations of the bush cricket species Isophya autumnalis Karabağ, 1962. Within-population body size variations, particularly those associated with distinct habitat differences and climate shifts within their local distribution ranges, suggest that ecological factors affect morphological characteristics. Sexual size dimorphism (SSD) in I. autumnalis may affect reproductive behavior and strategies, potentially influenced by the bioacoustic environment. While male calling songs exhibit temporal variations across populations, suggesting differences among allopatric populations, CHC profiles, known to undergo selection under various climatic conditions, also vary noticeably across local populations. These findings highlight the importance of understanding within-species variations for the conservation of Isophya and similar taxa in the face of habitat threats. Overall, this study contributes to a comprehensive understanding of how morphology and bioacoustic behavioral traits are shaped over short distances in allopatric populations of species with limited mobility, such as I. autumnalis, providing insights into adaptation processes and highlighting the urgency of conservation efforts for endemic species in Anatolia.

Files

JOR_article_118937.pdf

Files (4.2 MB)

Name Size Download all
md5:a2a9602943efa6360eacd19a5c228138
4.2 MB Preview Download

System files (212.2 kB)

Name Size Download all
md5:6f16bdf1e492eb388d431e36a6082a44
212.2 kB Download

Linked records

Additional details

References

  • Adams DC (2013) Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood. Systematic Biology 62: 181–192. https://doi.org/10.1093/sysbio/sys083
  • Arias A, Márquez R, Llusia D, Beltrán JF, Slimani T, Radi M, Fattah A, El Mouden EH (2012) Effects of temperature on the song parameters of the Moroccan bushcricket Eugaster spinulosa (Orthoptera, Tettigoniidae). Bioacoustics 21: 225–238. https://doi.org/10.1080/09524622.2012.686185
  • Beckers N, Hein N, Anneser A, Vanselow KA, Löffler J (2020) Differences in mobility and dispersal capacity determine body size clines in two common Alpine-Tundra Arthropods. Insects 11: 74. https://doi.org/10.3390/insects11020074
  • Berggren Å (2005) The effect of conspecifics on individual male movement in Roesel's bush cricket, Metrioptera roeseli. Ecological Entomology 30: 480–483. https://doi.org/10.1111/j.0307-6946.2005.00709.x
  • Bidau CJ, Martí DA (2007) Clinal variation of body size in Dichroplus pratensis (Orthoptera: Acrididae): Inversion of Bergmann's and Rensch's Rules. Annals of the Entomological Society of America 100: 850–860. https://doi.org/10.1603/0013-8746(2007)100[850:CVOBSI]2.0.CO;2
  • Bromham L (2009) Why do species vary in their rate of molecular evolution? Biology Letters 5: 401–404. https://doi.org/10.1098/rsbl.2009.0136
  • Can E (1958) Zur Kenntnis von Isophya amplipennis Br. v.W., I. pavelii Br. v.W. und I. tenuicerca Rme. (Orth. Tettigoniidae), als Schädlinge von Eichenniederwäldern in Südosteuropa. Teil I. Zeitschrift für Angewandte Entomologie 43: 387–411. https://doi.org/10.1111/j.1439-0418.1958.tb01334.x
  • Chapman RF, Espelie KE, Peck SB (2000) Cuticular hydrocarbons of grasshoppers from the Galapagos Islands, Ecuador. Biochemical Systematics and Ecology 28: 579–588. https://doi.org/10.1016/S0305-1978(99)00094-0
  • Chobanov DP, Kaya S, Grzywacz B, Warchałowska-Śliwa E, Çıplak B (2017) The Anatolio-Balkan phylogeographic fault: a snapshot from the genus Isophya (Orthoptera, Tettigoniidae). Zoologica Scripta 46: 165–179. https://doi.org/10.1111/zsc.12194
  • Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biological Reviews of the Cambridge Philosophical Society 85: 139–169. https://doi.org/10.1111/j.1469-185X.2009.00097.x
  • Classen A, Steffan-Dewenter I, Kindeketa WJ, Peters MK (2017) Integrating intraspecific variation in community ecology unifies theories on body size shifts along climatic gradients. Functional Ecology 31: 768–777. https://doi.org/10.1111/1365-2435.12786
  • Cooper EM, Lunt PH, Ellis JS, Knight ME (2013) Biogeographical patterns of variation in Western European populations of the great green bush-cricket (Tettigonia viridissima; Orthoptera Tettigoniidae). Journal of Insect Conservation 17: 431–440. https://doi.org/10.1007/s10841-012-9525-9
  • Cusano DA, Matthews LP, Grapstein E, Parks SE (2016) Effects of increasing temperature on acoustic advertisement in the tettigoniidae. Journal of Orthoptera Research 25: 39–47. https://doi.org/10.1665/034.025.0101
  • Çıplak B, Yahyaoğlu Ö, Uluar O (2021) Revisiting Pholidopterini (Orthoptera, Tettigoniidae): Rapid radiation causes homoplasy and phylogenetic instability. Zoologica Scripta 50: 225–240. https://doi.org/10.1111/zsc.12463
  • Davis JS, Pearcy MJ, Yew JY, Moyle LC (2021) A shift to shorter cuticular hydrocarbons accompanies sexual isolation among Drosophila americana group populations. Evolution letters 5: 521–540. https://doi.org/10.1002/evl3.246
  • Dos Santos AB, do Nascimento FS (2015) Cuticular hydrocarbons of orchid bees males: interspecific and chemotaxonomy variation. PLOS ONE 10: e0145070. https://doi.org/10.1371/journal.pone.0145070
  • Drijfhout FP (2010) Cuticular hydrocarbons: A new tool in forensic entomology? In: Amendt J, Goff ML, Campobasso CP, Grassberger M (Eds) Current concepts in forensic entomology. Springer Netherlands, Dordrecht, 179–203. https://doi.org/10.1007/978-1-4020-9684-6_10
  • Drijfhout FP, Kather R, Martin SJ (2010) The role of cuticular hydrocarbons in insects. In: Zhang W, Liu H (Eds) Behavioral and Chemical Ecology. Nova Science Publishers, Inc, 1–24.
  • Dupraz M, Leroy C, Thórarinsson TL, d'Ettorre P, McCoy KD (2022) Within and among population differences in cuticular hydrocarbons in the seabird tick Ixodes uriae. Peer Community Journal 2: e51. https://doi.org/10.24072/pcjournal.164
  • Eweleit L, Reinhold K (2014) Body size and elevation: do Bergmann's and Rensch's rule apply in the polytypic bushcricket Poecilimon veluchianus? Ecological Entomology 39: 133–136. https://doi.org/10.1111/een.12061
  • Eweleit L, Reinhold K, Sauer J (2015) Speciation progress: A case study on the bushcricket Poecilimon veluchianus. PLOS ONE 10: e0139494. https://doi.org/10.1371/journal.pone.0139494
  • Finck J, Berdan EL, Mayer F, Ronacher B, Geiselhardt S (2016) Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects. Scientific Reports 6: 33695. https://doi.org/10.1038/srep33695
  • Fitzpatrick BM, Fordyce JA, Gavrilets S (2009) Pattern, process and geographic modes of speciation. Journal of Evolutionary Biology 22: 2342–2347. https://doi.org/10.1111/j.1420-9101.2009.01833.x
  • Große-Stoltenberg A, Hellmann C, Werner C, Oldeland J, Thiele J (2016) Evaluation of continuous VNIR-SWIR spectra versus narrowband hyperspectral indices to discriminate the invasive Acacia longifolia within a Mediterranean dune ecosystem. Remote Sensing 8: 334. https://doi.org/10.3390/rs8040334
  • Grzywacz-Gibała B, Chobanov DP, Warchałowska-Śliwa E (2010) Preliminary phylogenetic analysis of the genus Isophya (Orthoptera: Phaneropteridae) based on molecular data. Zootaxa 2621: 27–44. https://doi.org/10.11646/zootaxa.2621.1.2
  • Grzywacz B, Heller K-G, Warchałowska-Śliwa E, Karamysheva TV, Chobanov DP (2017) Evolution and systematics of Green Bush-crickets (Orthoptera: Tettigoniidae: Tettigonia) in the Western Palaearctic: testing concordance between molecular, acoustic, and morphological data. Organisms, Diversity & Evolution 17: 213–228. https://doi.org/10.1007/s13127-016-0313-3
  • Hall M, Robinson D (2021) Acoustic signalling in Orthoptera. In: Sound communication in insects. Advances in insect physiology. Elsevier, 1–99. https://doi.org/10.1016/bs.aiip.2021.09.001
  • Hare RM, Larsdotter-Mellström H, Simmons LW (2022) Sexual dimorphism in cuticular hydrocarbons and their potential use in mating in a bushcricket with dynamic sex roles. Animal Behaviour 187: 245–252. https://doi.org/10.1016/j.anbehav.2022.03.014
  • Heller K-G (1988) Bioakustik der europäischen Laubheuschrecken. J. Margraf, Weikersheim.
  • Heller K-G (2006) Song evolution and speciation in bush-crickets. In: Bailey WJ, Rentz DCF (Eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, 137–152. https://doi.org/10.1201/9781420039337.ch9
  • Heller KG, von Helversen D (1986) Acoustic communication in phaneropterid bushcrickets: species-specific delay of female stridulatory response and matching male sensory time window. Behavioral Ecology and Sociobiology 18: 189–198. https://doi.org/10.1007/BF00290822
  • Heller KG, Orci KM, Grein G, Ingrisch S (2004) The Isophya species of Central and Western Europe (Orthoptera: Tettigonioidea: Phaneropteridae). Tijdschrift Voor Entomologie 147: 237–258. https://doi.org/10.1163/22119434-900000153
  • Hemp C, Kehl S, Heller K-G, Wägele JW, Hemp A (2010) A new genus of African Karniellina (Orthoptera, Tettigoniidae, Conocephalinae, Conocephalini): integrating morphological, molecular and bioacoustical data. Systematic entomology 35: 581–595. https://doi.org/10.1111/j.1365-3113.2010.00528.x
  • Hijmans RJ, van Etten J (2012) raster: Geographic analysis and modeling with raster data. R package. CRAN. R.-project. Computer software.
  • Hochkirch A, Gröning J (2008) Sexual size dimorphism in Orthoptera (sens. str.) — a review. Journal of Orthoptera Research 17: 189–196. https://doi.org/10.1665/1082-6467-17.2.189
  • Holze H, Schrader L, Buellesbach J (2021) Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity 126: 219–234. https://doi.org/10.1038/s41437-020-00380-y
  • Howard DJ, Berlocher SH (1998) Endless Forms: Species and Speciation. Oxford University Press.
  • Ingleby FC (2015) Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6: 732–742. https://doi.org/10.3390/insects6030732
  • Iorgu EI, Popa OP, Krapal A-M, Popa LO (2013) Isolation and characterization of microsatellite loci for Stys's bush-cricket, Isophya stysi, and cross-species amplification in closely related species from the Phaneropteridae family. Journal of Insect Science (Online) 13: 55. https://doi.org/10.1673/031.013.5501
  • Iorgu IŞ (2012) Acoustic analysis reveals a new cryptic bush-cricket in the Carpathian Mountains (Orthoptera, Phaneropteridae). ZooKeys: 1–22. https://doi.org/10.3897/zookeys.254.3892
  • Ivković S, Chobanov D, Horvat L, Iorgu I Ștefan, Hochkirch A (2022) Geographic differentiation in male calling song of Isophya modestior (Orthoptera, Tettigoniidae, Phaneropterinae). Zarządzanie w Kulturze 1122: 107–123. https://doi.org/10.3897/zookeys.1122.85721
  • Ivković S, Dey L-S, Maria Buzzetti F, Puskás G, Warchałowska-Śliwa E, Horvat L, Chobanov D, Hochkirch A (2023) Strong intraspecific phylogenetic and karyotypic diversification in Isophya modestior (Orthoptera: Tettigoniidae: Phaneropterinae). Biological Journal of the Linnean Society 138: 194–203. https://doi.org/10.1093/biolinnean/blac142
  • Karabağ T (1962) Some new and little known Phaneropterinae (Orthoptera: Tettigoniidae) from Turkey. Proceedings of the Royal Entomological Society of London (B) 31: 4–10. https://doi.org/10.1111/j.1365-3113.1962.tb01162.x
  • Kárpáti Z, Deutsch F, Kiss B, Schmitt T (2023) Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii. Scientific Reports 13: 5649. https://doi.org/10.1038/s41598-023-32652-y
  • Kassambra A, Mundt F (2020) Factoextra: Extract and visualize the results of multivariate data analyses. R Package. Computer software.
  • Kather R, Martin SJ (2012) Cuticular hydrocarbon profiles as a taxonomic tool: advantages, limitations and technical aspects. Physiological Entomology 37: 25–32. https://doi.org/10.1111/j.1365-3032.2011.00826.x
  • Kociński M, Chobanov D, Grzywacz B (2022) New insights into the genetic diversity of the Balkan bush-crickets of the Poecilimon ornatus group (Orthoptera: Tettigoniidae). Arthropod Systematics & Phylogeny 80: 243–259. https://doi.org/10.3897/asp.80.e82447
  • Kota MV, Heinen‐Kay JL, Zuk M (2021) Geographic variation in cuticular hydrocarbon profiles in Pacific field crickets. Ecological Entomology 46: 1118–1127. https://doi.org/10.1111/een.13056
  • König S, Krauss J (2019) Get larger or grow longer wings? Impacts of habitat area and habitat amount on orthopteran assemblages and populations in semi-natural grasslands. Landscape Ecology 34: 175–186. https://doi.org/10.1007/s10980-018-0762-5
  • Kula C, Amendt J, Drijfhout FP, Moore HE (2023) Geographical variation of cuticular hydrocarbon profiles of adult flies and empty puparia amongst three populations of Calliphora vicina (Diptera: Calliphoridae). Journal of Medical Entomology 60: 14–23. https://doi.org/10.1093/jme/tjac167
  • Kuyucu AC, Sahin MK, Caglar SS (2018) The relation between melanism and thermal biology in a colour polymorphic bush cricket, Isophya rizeensis. Journal of Thermal Biology 71: 212–220. https://doi.org/10.1016/j.jtherbio.2017.11.017
  • Lamb AM, Wang Z, Simmer P, Chung H, Wittkopp PJ (2020) ebony affects pigmentation divergence and cuticular hydrocarbons in Drosophila americana and D. novamexicana. Frontiers in Ecology and Evolution 8: 184. https://doi.org/10.3389/fevo.2020.00184
  • Langerhans RB, Riesch R (2013) Speciation by selection: A framework for understanding ecology's role in speciation. Current Zoology 59: 31–52. https://doi.org/10.1093/czoolo/59.1.31
  • Lastovicka J, Svec P, Paluba D, Kobliuk N, Svoboda J, Hladky R, Stych P (2020) Sentinel-2 data in an evaluation of the impact of the disturbances on forest vegetation. Remote Sensing 12: 1914. https://doi.org/10.3390/rs12121914
  • Lê S, Josse J, Husson F (2008) FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25: 1–18. https://doi.org/10.18637/jss.v025.i01
  • Leitão PJ, Santos MJ (2019) Improving models of species ecological niches: A remote sensing overview. Frontiers in Ecology and Evolution 7: 9. https://doi.org/10.3389/fevo.2019.00009
  • Losos JB (1990) Concordant evolution of locomotor behaviour, display rate and morphology in Anolis lizards. Animal Behaviour 39: 879–890. https://doi.org/10.1016/S0003-3472(05)80952-2
  • Lovich JE, Gibbons JW (1992) Review of techniques for quantifying sexual size dimorphism. Growth, Development and Aging 56: 269–281.
  • Martin SJ, Helanterä H, Drijfhout FP (2008) Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biological Journal of the Linnean Society 95: 131–140. https://doi.org/10.1111/j.1095-8312.2008.01038.x
  • McCartney J, Potter MA, Robertson AW, Telscher K, Lehmann G, Lehmann A, von-Helversen D, Reinhold K, Achmann R, Heller K-G (2008) Understanding nuptial gift size in bush-crickets: an analysis of the genus Poecilimon (Tettigoniidae: Orthoptera). Journal of Orthoptera Research 17: 231–242. https://doi.org/10.1665/1082-6467-17.2.231
  • Moore HE, Hall MJR, Drijfhout FP, Cody RB, Whitmore D (2021) Cuticular hydrocarbons for identifying Sarcophagidae (Diptera). Scientific Reports 11: 7732. https://doi.org/10.1038/s41598-021-87221-y
  • Moore H, Lutz L, Bernhardt V, Drijfhout FP, Cody RB, Amendt J (2022) Cuticular hydrocarbons for the identification and geographic assignment of empty puparia of forensically important flies. International Journal of Legal Medicine 136: 1791–1800. https://doi.org/10.1007/s00414-022-02786-1
  • Morrison WR, Witte V (2011) Strong differences in chemical recognition cues between two closely related species of ants from the genus Lasius (Hymenoptera: Formicidae). Journal of Evolutionary Biology 24: 2389–2397. https://doi.org/10.1111/j.1420-9101.2011.02364.x
  • Neems RM, Butlin RK (1994) Variation in cuticular hydrocarbons across a hybrid zone in the grasshopper Chorthippus parallelus. Proceedings of the Royal Society B, Biological Sciences 257: 135–140. https://doi.org/10.1098/rspb.1994.0106
  • Niogret J, Felix A-E, Nicot A, Lumaret J-P (2019) Chemosystematics using cuticular compounds: A powerful tool to separate species in mediterranean dung beetles (Coleoptera: Geotrupidae). Journal of Insect Science (Online) 19. https://doi.org/10.1093/jisesa/iez026
  • Nolen ZJ, Yildirim B, Irisarri I, Liu S, Groot Crego C, Amby DB, Mayer F, Gilbert MTP, Pereira RJ (2020) Historical isolation facilitates species radiation by sexual selection: Insights from Chorthippus grasshoppers. Molecular Ecology 29: 4985–5002. https://doi.org/10.1111/mec.15695
  • Nuhlíčková S, Svetlík J, Kaňuch P, Krištín A, Jarčuška B (2023) Movement patterns of the endemic flightless bush-cricket, Isophya beybienkoi. Journal of Insect Conservation 28: 141–150. https://doi.org/10.1007/s10841-023-00529-0
  • Peña-Carrillo KI, Poteaux C, Leroy C, Meza-Lázaro RN, Lachaud J-P, Zaldívar-Riverón A, Lorenzi MC (2021) Highly divergent cuticular hydrocarbon profiles in the cleptobiotic ants of the Ectatomma ruidum species complex. Chemoecology 31: 125–135. https://doi.org/10.1007/s00049-020-00334-0
  • Perpiñán O, Hijmans R (2023) rasterVis. R package. https://oscarperpinan.github.io/rastervis/ [Computer software]
  • Piedelobo L, Taramelli A, Schiavon E, Valentini E, Molina J-L, Nguyen Xuan A, González-Aguilera D (2019) Assessment of green infrastructure in riparian zones using copernicus programme. Remote Sensing 11: 2967. https://doi.org/10.3390/rs11242967
  • Pinto-Ledezma JN, Cavender-Bares J (2020) Using remote sensing for modeling and monitoring species distributions. In: Cavender-Bares J, Gamon JA, Townsend PA (Eds) Remote sensing of plant biodiversity. Springer International Publishing, Cham, 199–223. https://doi.org/10.1007/978-3-030-33157-3_9
  • Pitchers WR, Klingenberg CP, Tregenza T, Hunt J, Dworkin I (2014) The potential influence of morphology on the evolutionary divergence of an acoustic signal. Journal of Evolutionary Biology 27: 2163–2176. https://doi.org/10.1111/jeb.12471
  • Poniatowski D, Fartmann T (2011) Does wing dimorphism affect mobility in Metrioptera roeselii (Orthoptera: Tettigoniidae)? European Journal of Entomology 108: 409–415. https://doi.org/10.14411/eje.2011.052
  • Redjdal A, Sahnoune M, Moali A, De Biseau J-C (2023) High divergence of cuticular hydrocarbons and hybridization success in two allopatric seven-spot ladybugs. Journal of Chemical Ecology 49: 103–115. https://doi.org/10.1007/s10886-023-01406-5
  • Remmel T, Tammaru T (2009) Size-dependent predation risk in tree-feeding insects with different colouration strategies: a field experiment. The Journal of Animal Ecology 78: 973–980. https://doi.org/10.1111/j.1365-2656.2009.01566.x
  • Roff D (2002) Life History Evolution. Sinauer Associates is an imprint of Oxford University Press; 1st ed. (November 10, 2001).
  • RStudio Team (2021) RStudio: Integrated Development for R.
  • Schwager P, Berg C (2021) Remote sensing variables improve species distribution models for alpine plant species. Basic and Applied Ecology 54: 1–13. https://doi.org/10.1016/j.baae.2021.04.002
  • Sevgili H (2004) A revision of Turkish species of Isophya Brunner von Wattenwyl (Orthoptera: Tettigoniidae: Phaneropterinae). Doctoral dissertation. Hacettepe University. https://doi.org/10.1163/22119434-900000117
  • Sevgili H (2018) Bioacoustics and morphology of a new bush-cricket species of the genus Isophya (Orthoptera: Phaneropterinae) from Turkey. Zootaxa 4514: 451–472. https://doi.org/10.11646/zootaxa.4514.4.1
  • Sevgili H (2020) Isophya sonora, a new bush-cricket species from Eastern Black Sea region of Turkey (Orthoptera: Tettigoniidae; Phaneropterinae). Zootaxa 4860: 284–292. https://doi.org/10.11646/zootaxa.4860.2.9
  • Sevgili H (2022) Searching for mates may shape the immune response and parental investments. BioRxiv. https://doi.org/10.1101/2022.05.08.491084
  • Sevgili H, Çiplak B, Heller KG, Demirsoy A (2006) Morphology, bioacoustics and phylogeography of the Isophya major group (Orthoptera: Tettigoniidae: Phaneropterinae): A species complex occurring in Anatolia and Cyprus. European Journal of Entomology 103: 657–671. https://doi.org/10.14411/eje.2006.086
  • Sevgili H, Heller K-G, Reinhold K (2008) A re-assessment of the Poecilimon syriacus group (Orthoptera Tettigonioidea, Phaneropteridae) based on bioacoustics, morphology and molecular data. Insect Systematics & Evolution 39: 361–379. https://doi.org/10.1163/187631208788784309
  • Sevgili H, Demirsoy A, Çiplak B (2012) Description and bioacoustics of a new species of the genus Isophya (Orthoptera: Tetigoniidae: Phaneropterinae) from Turkey. Zootaxa 3361: 33–44. https://doi.org/10.11646/zootaxa.3361.1.3
  • Sevgili H, Şirin D, Heller K-G, Lemonnier-Darcemont M (2018) Review of the Poecilimon (Poecilimon) zonatus species group and description of new species from Turkey with data on bioacoustics and morphology (Orthoptera: Phaneropterinae). Zootaxa 4417: 1–62. https://doi.org/10.11646/zootaxa.4417.1.1
  • Sirin D, Von Helversen O, Ciplak B (2010) Chorthippus brunneus subgroup (Orthoptera, Gomphocerinae) in Anatolia with description of two new species: data suggest an Anatolian origin for the lineage. Zootaxa 2410: 1. https://doi.org/10.11646/zootaxa.2410.1.1
  • Sobel JM, Chen GF, Watt LR, Schemske DW (2010) The biology of speciation. Evolution 64: 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.x
  • Sofrane Z, Dupont S, Doumandji S, Bagnères A-G (2022) A genetic and chemical study of six Oedipodinae species (Orthoptera: Caelifera: Acrididae) from Algeria. Revista de la Sociedad Entomológica Argentina 81: 29–40. https://doi.org/10.25085/rsea.810103
  • Steiger S, Ower GD, Stökl J, Mitchell C, Hunt J, Sakaluk SK (2013) Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proceedings of the Royal Society B, Biological Sciences 280: 20132353. https://doi.org/10.1098/rspb.2013.2353
  • Stillwell RC, Morse GE, Fox CW (2007) Geographic variation in body size and sexual size dimorphism of a seed-feeding beetle. The American Naturalist 170: 358–369. https://doi.org/10.1086/520118
  • Suvanto, Liimatainen, Tregenza, Hoikkala (2000) Courtship signals and mate choice of the flies of inbred Drosophila montana strains. Journal of Evolutionary Biology 13: 583–592. https://doi.org/10.1046/j.1420-9101.2000.00208.x
  • Szövényi G, Puskás G, Orci KM (2012) Isophya nagyi, a new phaneropterid bush-cricket (Orthoptera: Tettigonioidea) from the Eastern Carpathians (Caliman Mountains, North Romania). Zootaxa 3521: 67–79. https://doi.org/10.11646/zootaxa.3521.1.5
  • Tarasova T, Tishechkin D, Vedenina V (2021) Songs and morphology in three species of the Chorthippus biguttulus group (Orthoptera, Acrididae, Gomphocerinae) in Russia and adjacent countries. ZooKeys 1073: 21–53. https://doi.org/10.3897/zookeys.1073.75539
  • Taylan MS, Şirin D (2016) Speciation of the genus Dolichopoda in Anatolia with reference to the role of ancient central lake system. Insect Systematics & Evolution 47: 267–283. https://doi.org/10.1163/1876312X-47032143
  • Thomas ML, Simmons LW (2008) Cuticular hydrocarbons are heritable in the cricket Teleogryllus oceanicus. Journal of Evolutionary Biology 21: 801–806. https://doi.org/10.1111/j.1420-9101.2008.01514.x
  • Thomas ML, Simmons LW (2009) Sexual selection on cuticular hydrocarbons in the Australian field cricket, Teleogryllus oceanicus. BMC Evolutionary Biology 9: 162. https://doi.org/10.1186/1471-2148-9-162
  • Thomas ML, Simmons LW (2010) Cuticular hydrocarbons influence female attractiveness to males in the Australian field cricket, Teleogryllus oceanicus. Journal of Evolutionary Biology 23: 707–714. https://doi.org/10.1111/j.1420-9101.2010.01943.x
  • Thomas ML, Gray B, Simmons LW (2011) Male crickets alter the relative expression of cuticular hydrocarbons when exposed to different acoustic environments. Animal Behaviour 82: 49–53. https://doi.org/10.1016/j.anbehav.2011.03.023
  • Tregenza T, Pritchard VL, Butlin RK (2000) Patterns of trait divergence between populations of the meadow grasshopper, Chorthippus parallelus. Evolution 54: 574–585. https://doi.org/10.1111/j.0014-3820.2000.tb00060.x
  • Uma R, Sevgili H (2015) Spermatophore allocation strategy over successive matings in the bushcricket Isophya sikorai (Orthoptera, Phaneropterinae). Ethology Ecology & Evolution 27: 129–147. https://doi.org/10.1080/03949370.2014.896830
  • Ünal M (2010) Phaneropterinae (Orthoptera: Tettigoniidae) from Turkey and the Middle East II. Transactions of the American Entomological Society 136: 125–183. https://doi.org/10.3157/061.136.0203
  • Veltsos P, Wicker-Thomas C, Butlin RK, Hoikkala A, Ritchie MG (2012) Sexual selection on song and cuticular hydrocarbons in two distinct populations of Drosophila montana. Ecology and Evolution 2: 80–94. https://doi.org/10.1002/ece3.75
  • Weissing FJ, Edelaar P, van Doorn GS (2011) Adaptive speciation theory: a conceptual review. Behavioral Ecology and Sociobiology 65: 461–480. https://doi.org/10.1007/s00265-010-1125-7
  • White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends in Ecology & Evolution 22: 323–330. https://doi.org/10.1016/j.tree.2007.03.007
  • Whitman DW (2008) The significance of body size in the Orthoptera: a review. Journal of Orthoptera Research 17: 117–134. https://doi.org/10.1665/1082-6467-17.2.117
  • Wickham H (2016) ggplot2 - Elegant Graphics for Data Analysis . Springer-Verlag New York, New York, NY. https://doi.org/10.1007/978-0-387-98141-3
  • Zhantiev RD, Dubrovin NN (1977) Sound communication in the genus Isophya (Orthoptera, Tettigoniidae). Zoologicheskii Journal 56: 38–51.
  • Zhantiev R, Korsunovskaya O, Benediktov A (2017) Acoustic signals of the bush-crickets Isophya (Orthoptera: Phaneropteridae) from Eastern Europe, Caucasus and adjacent territories. European Journal of Entomology 114: 301–311. https://doi.org/10.14411/eje.2017.037