There is a newer version of the record available.

Published August 16, 2024 | Version v1
Dataset Open

Acquiring musculoskeletal skills with curriculum-based reinforcement learning - model weights

Description

Acquiring musculoskeletal skills with curriculum-based reinforcement learning, Neuron 2024

Here we provide the weights of the neural network policies used for the analysis presented in our article.

The archives whose names start with a number (01 - 32) correspond to the 32 curriculum steps to train the Baoding Balls policy which ranked first at the MyoChallenge 2022. The code used for the training and which can be used to test the policies can be found at https://github.com/amathislab/myochallenge.

The archives hand_pose, hand_reach, pen and reorient correspond to the other policies used in the article. They were developed in the paper Latent exploration for reinforcement learning, Chiappa et al., NeurIPS 2023. They can be loaded and tested with the code at https://github.com/amathislab/lattice.

The archive datasets includes three subfolders: rollouts, umap and csi.

  • The files in rollouts are the datasets of transitions resulting from the interaction between a policy and the environment. 
  • The files in umap are the pre-computed projections of specific subsets fo the datasets included in rollouts using UMAP.
  • The files in csi report the performance of the policies described in our paper when applying Control Subspace Inactivation (CSI).

These datasets are necessary to run the notebooks to reproduce the paper's figures and main results, with the code at https://github.com/amathislab/MyoChallengeAnalysis

If you find these weights useful, please cite:

@article{chiappa2024acquiring,
title={Acquiring musculoskeletal skills with curriculum-based reinforcement learning},
author={Chiappa, Alberto Silvio and Tano, Pablo and Patel, Nisheet and Ingster, Abigail and Pouget, Alexandre and Mathis, Alexander},
journal={bioRxiv},
pages={2024--01},
year={2024},
publisher={Cold Spring Harbor Laboratory}
}
 
@article{chiappa2024latent,
title={Latent exploration for reinforcement learning},
author={Chiappa, Alberto Silvio and Marin Vargas, Alessandro and Huang, Ann and Mathis, Alexander},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}

Files

01_rsi_static.zip

Files (6.8 GB)

Name Size Download all
md5:2babf5fe6942892f4554a2393bdabb10
23.8 MB Preview Download
md5:af69614ee9b564be99da18bb3559fcc6
12.4 MB Preview Download
md5:8151947dcb7d7e3965bbc9801dad4464
12.4 MB Preview Download
md5:364e72343a6ccb583f322f92b4477549
12.6 MB Preview Download
md5:0927fd76a2e25ad107fc8def4918b9ef
13.0 MB Preview Download
md5:d7959525b000159866ece137ec4a5cb1
12.4 MB Preview Download
md5:4131af1a2037ceb0e9687c81509186b7
12.1 MB Preview Download
md5:3ea813d38f55f1c40a58170228935cba
13.0 MB Preview Download
md5:04e0edb05a18a3bdf60f4d5b28689704
13.0 MB Preview Download
md5:5396937a01606801b3da5e3de93eff8d
12.4 MB Preview Download
md5:4117466197965e705d9c4fab1a38313a
12.6 MB Preview Download
md5:b6c8a6cdb468b661f440cfbe8ad4a03f
12.6 MB Preview Download
md5:ee9ba78d2865bb037c0f71a0238c0326
12.8 MB Preview Download
md5:5c22adecd8eccdf691d738dde8601f93
12.7 MB Preview Download
md5:6432b19d530d6540fcd275acac4c3340
12.7 MB Preview Download
md5:2291a020ca35be771b5d776947e3934b
12.5 MB Preview Download
md5:9a020bc0ad4070c1cbfd0bb4d0309dbe
12.2 MB Preview Download
md5:5c684783f1493350db3601c032df740e
12.5 MB Preview Download
md5:5754d0a5504b42072f07ce1a216ff3c0
12.2 MB Preview Download
md5:7d4b11f7f7197ab777c6f4e99dae9247
23.8 MB Preview Download
md5:927971cd04b8dfa663e09f3cdf997e89
12.3 MB Preview Download
md5:17aa0ab0a1f8a1d784a92169e21c0ce1
12.8 MB Preview Download
md5:13476f45867d29fd9a5e3efc64c15bd8
23.2 MB Preview Download
md5:89a8b550bbc1d1119bb062f1709cc50f
11.9 MB Preview Download
md5:86415865ba4e56794edb09f4804e9c8c
11.9 MB Preview Download
md5:1598ed673861e9d4ad15bb767c01d0de
12.0 MB Preview Download
md5:6cfa8a216ae4cecb2bd5d81e6b2497ea
12.8 MB Preview Download
md5:16f9d0fcd03afb7145a4a92962b7fae5
12.0 MB Preview Download
md5:7f666df6c522e98a23efff39b56521de
11.9 MB Preview Download
md5:21f413efb48e67bf6dbb88e2b4522441
15.1 MB Preview Download
md5:9c84a38c7f323ccfcd7c6bcb107983db
12.3 MB Preview Download
md5:1b5b7648ea57af238b7490aaea3bb8b0
24.0 MB Preview Download
md5:06d18979a35284aaeda50177a5360729
6.3 GB Preview Download
md5:59e2f9eeaaf1b86eae86a49b771e478c
28.1 MB Preview Download
md5:91741bdde900756f77d35933dba10165
27.7 MB Preview Download
md5:0301f0f2591f46b64f9a401c946e12d4
28.3 MB Preview Download
md5:c3107a2265cf6cde5c49959e6f6cdcb7
29.7 MB Preview Download

Additional details

Funding

Swiss National Science Foundation
A theory-driven approach to understanding the neural circuits of proprioception 212516

Software

Repository URL
https://github.com/amathislab/myochallenge
Programming language
Python