Published December 16, 2023 | Version v2.0
Software Open

deepFPlearn +: enhancing toxicity prediction across the chemical universe using graph neural networks

  • 1. ROR icon Helmholtz Centre for Environmental Research
  • 2. Max Planck Institute for Human Cognitive and Brain Sciences
  • 3. Helmholtz-Zentrum für Umweltforschung UFZ

Contributors

Project member:

  • 1. ROR icon Helmholtz Centre for Environmental Research

Description

Summary: Sophisticated approaches for the in silico prediction of toxicity are required to support the risk assessment of chemicals. The number of chemicals on the global chemical market and the speed of chemical innovation stand in massive contrast to the capacity for regularizing chemical use. We recently proved our ready-to-use application deepFPlearn as a suitable approach for this task. Here, we present its extension deepFPlearn+ incorporating (i) a graph neural network to feed our AI with a more sophisticated molecular structure representation and (ii) alternative train-test splitting strategies that involve scaffold structures and the molecular weights of chemicals. We show that the GNNs outperform the previous model substantially and that our models can generalize on unseen data even with a more robust and challenging test set. Therefore, we highly recommend the application of deepFPlearn+ on the chemical inventory to prioritize chemicals for experimental testing or any chemical subset of interest in monitoring studies.

Availability and implementation: The software is compatible with python 3.6 or higher, and the source code can be found on our GitHub repository: https://github.com/yigbt/deepFPlearn. The data underlying this article are available in Zenodo, and can be accessed with the link below: https://zenodo.org/record/8146252. Detailed installation guides via Docker, Singularity, and Conda are provided within the repository for operability across all operating systems.

Files

Files (305.5 kB)

Name Size Download all
md5:3941aaca882e124d518ad749773f2c6d
305.5 kB Download

Additional details

Related works

Is derived from
Software: 10.5281/zenodo.13329412 (DOI)

Software

Repository URL
https://github.com/yigbt/deepFPlearn
Development Status
Active