Published May 31, 2022 | Version v1
Journal article Open

Quantum Cascade Lasers

Description

Quantum Cascade Lasers (QCLs) represent a significant advancement in laser technology, enabling a broad range of applications due to their unique operational principles. Unlike traditional semiconductor lasers that rely on inter-band transitions, QCLs use intersubband transitions within quantum wells, allowing for emission in the mid-infrared and terahertz regions. This paper aims to provide a comprehensive overview of QCL technology, discussing its principles, current developments, and potential future applications. The integration of QCLs with silicon technology is also examined, showcasing the potential for creating compact, efficient photonic devices. By leveraging advanced fabrication techniques and integrating with silicon photonics, QCLs can revolutionize applications in environmental monitoring, medical diagnostics, and security. This research highlights the current state of QCL technology and its future trajectory.

Files

EJAET-9-5-120-126.pdf

Files (213.7 kB)

Name Size Download all
md5:fbad55927481f08543720eaafa3b3dc9
213.7 kB Preview Download

Additional details

References

  • [1]. Capasso, F. (2010). High-Performance Quantum Cascade Lasers. Nature Photonics, 4(9), 511-523. https://www.nature.com/articles/nphoton.2010.167
  • [2]. Williams, B. S. (2007). Terahertz Quantum-Cascade Lasers. Nature Photonics, 1(9), 517-525 https://www.nature.com/articles/nphoton.2007.166
  • [3]. Scalari, G., Walther, C., Fischer, M., Terazzi, R., Beck, M., Faist, J. (2009). THz and Sub-THz Quantum Cascade Lasers. Laser Photonics Reviews, 3(1-2), 45-66. https://onlinelibrary.wiley.com/doi/10.1002/lpor.200810027
  • [4]. Yao, Y., Hoffman, A. J., Gmachl, C. (2012). MidInfrared Quantum Cascade Lasers. Nature Photonics, 6(7), 432-439.https://www.nature.com/articles/nphoton.2012.143
  • [5]. Gmachl, C., Capasso, F., Sivco, D. L., Cho, A. Y. (2001). Recent Progress in Quantum Cascade Lasers and Applications. Reports on Progress in Physics, 64(11), 1533-1601.https://iopscience.iop.org/article/10.1088/0034-4885/64/
  • [6]. Optical Society of America. (2020). Integration of Quantum Cascade Lasers on Silicon. Optics Express.https://www.osapublishing.org/oe/fulltext.cfm?uri=oe28-7-10079&id=429609
  • [7]. IEEE Xplore. (2019). Thermal Management in Quantum Cascade Lasers. IEEE Photonics Journal. https://ieeexplore.ieee.org/document/8938097
  • [8]. ACS Photonics. (2019). Strain-Balanced Quantum Well Structures for QCLs. ACS Photonics.https://pubs.acs.org/doi/10.1021/acsphotonics.9b01089
  • [9]. Hinkov, B., Rochat, M., Faist, J. (2002). Low Threshold Quantum Cascade Lasers. Applied Physics Letters, 81(14), 2683-2685.https://doi.org/10.1063/1.1504177
  • [10]. Sirtori, C. (1999). Quantum Cascade Lasers: Basic Principles and Applications. Proceedings of the IEEE, 87(9), 1401-1423.https://doi.org/10.1109/5.784566