Published December 31, 2016 | Version v1
Journal article Open

Non-linear ontogenetic shape change in Cryptolithus tesselatus (Trilobita) using three-dimensional geometric morphometrics

Description

Hopkins, Melanie J., Pearson, J. Kirk (2016): Non-linear ontogenetic shape change in Cryptolithus tesselatus (Trilobita) using three-dimensional geometric morphometrics. Palaeontologia Electronica 14 (5): 1-54, DOI: 10.26879/665, URL: http://dx.doi.org/10.26879/665

Files

source.pdf

Files (5.1 MB)

Name Size Download all
md5:7fe2be1805c455a527f57ef546daa2c6
5.1 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFE2BE18FFC4FFA5FFF5FFF5FFDAFFC6

References

  • Abe, F.R. and Lieberman, B.S. 2012. Quantifying morphological change during an evolutionary radiation of Devonian trilobites. Paleobiology, 38:292-307.
  • Adrain, J.M. 2005. Aulacopleurid trilobites from the Upper Ordovician of Virginia. Journal of Paleontology, 79:542-563.
  • Adrain, J.M. and Westrop, S.R. 2006. New earliest Ordovician trilobite genus Millardicurus: the oldest known hystricurid. Journal of Paleontology, 80:650-671.
  • Bignon, A. and Cronier, C. 2012. Evolutionary modifications of ontogeny of three Dechenella species (Proetidae), from the Middle Devonian of the Ardenne Massif (France). Journal of Paleontology, 86:558- 566.
  • Cronier, C. and Fortey, R. 2006. Morphology and ontogeny of an Early Devonian phacopid trilobite with reduced sight from southern Thailand. Journal of Paleontology, 80:529-536.
  • Cronier, C., Auffray, J.C., and Courville, P. 2005. A quantitative comparison of the ontogeny of two closely -related Upper Devonian phacopid trilobites. Lethaia, 38:123-135.
  • Cronier, C., Feist, R., and Auffray, J.C. 2004. Variation in the eye of Acuticryphops (Phacopina, Trilobita) and its evolutionary significance: a biometric and morphometric approach. Paleobiology, 30:471-481.
  • Delabroye, A. and Cronier, C. 2008. Ontogeny of an Ordovician trinucleid (Trilobita) from Armorica, France: a morphometric approach. Journal of Paleontology, 82:800-810.
  • Fusco, G., Hughes, N.C., Webster, M., and Minelli, A., 2004, Exploring developmental modes in a fossil arthropod: growth and trunk segmentation of the trilobite Aulacopleura konincki American Naturalist, 163:167-183.
  • Gendry, D., Courville, P., Saucede, T., Laffont, R., and Paris, F. 2013. Contribution of morphometrics to the systematics of the Ordovician genus Neseuretus (Calymenidae, Trilobita) from the Armorican Massif, France. Journal of Paleontology, 87:456-471.
  • Gerber, S. and Hopkins, M.J. 2011. Mosaic heterochrony and evolutionary modularity: the trilobite genus Zacanthopsis as a case study. Evolution, 65:3241-3252.
  • Hong, P.S., Hughes, N.C., and Sheets, H.D. 2014. Size, shape, and systematics of the Silurian trilobite Aulacopleura koninckii. Journal of Paleontology, 88:1120- 1138.
  • Hopkins, M.J. 2011. How species longevity, intraspecific morphological variation, and geographic range size are related: a comparison using Late Cambrian trilobites. Evolution, 65:3252-3273.
  • Hopkins, M.J. 2013. Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae. Journal of Evolutionary Biology, 26:1665-1676.
  • Hopkins, M.J. and Webster, M. 2009. Ontogeny and geographic variation of a new species of the corynexochine trilobite Zacanthopsis (Dyeran, Cambrian). Journal of Paleontology, 83:524-547.
  • Hughes, N.C. and Chapman, R.E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite palaeobiology. Lethaia, 28:333-353.
  • Hughes, N.C. and Chapman, R.E. 2001. Morphometry and phylogeny in the resolution of paleobiological problems-unlocking the evolutionary significance of an assemblage of Silurian trilobites, p. 29-54. In Adrain, J.M., Edgecombe, G.D., and Lieberman, B.S. (eds.), Fossils, Phylogeny, and Form. Springer.
  • Hunda, B.R. and Hughes, N.C. 2007. Evaluating paedomorphic heterochrony in trilobites: the case of the diminutive trilobite Flexicalymene retrosa minuens from the Cincinnatian series (Upper Ordovican), Cincinnati region. Evolution and Development, 9:483- 498.
  • Kim, K., Sheets, H.D., Haney, R.A., and Mitchell, C.E. 2002. Morphometric analysis of ontogeny and allometry of the Middle Ordovician trilobite Triarthrus becki. Paleobiology, 28:364-377.
  • Kim, K., Sheets, H.D., and Mitchell, C.E. 2009. Geographic and stratigraphic change in the morphology of Triarthrus beckii (Green) (Trilobita): a test of the Plus ca change model of evolution. Lethaia, 42:108- 125.
  • MacLeod, N. 2002. Phylogenetic signals in morphometric data, p. 100-138. In MacLeod, N. and Forey, P.L. (eds.), Morphology, Shape and Phylogeny. CRC Press.
  • McCormick, T. and Fortey, R.A. 1999. The most widely distributed trilobite species: Ordovician Carolinites genacinaca. Journal of Paleontology, 73:202-218.
  • McCormick, T. and Fortey, R.A. 2002. The Ordovician trilobite Carolinites, a test case for microevolution in a macrofossil lineage. Palaeontology, 45:229-257.
  • Park, T.-Y. and Choi, D.K. 2011. Ontogeny of the Furongian (late Cambrian) remopleuridioid trilobite Haniwa quadrata Kobayashi, 1933, from Korea: implications for trilobite taxonomy. Geological Magazine, 148:288-303.
  • Park, T.-Y.S. and Kihm, J.-H. 2015. Post-embryonic development of the Early Ordovician (ca. 480 Ma) trilobite Apatokephalus latilimbatus Peng, 1990 and the evolution of metamorphosis. Evolution & Development, 17:289-301.
  • Park, T.-Y.S., Kihm, J.-H., Kang, I., and Choi, D.K. 2014. Ontogeny of a new species of the Cambrian Series 3 (Middle Cambrian) trilobite genus Liostracina Monke, 1903 from North China and the taxonomic position of the superfamily Trinucleoidea. Journal of Paleontology, 88:395-402.
  • Sheets, H.D., Kim, K., and Mitchell, C.E. 2004. A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki, p. 67-82. In Elewa, A.M.T. (ed.), Morphometrics: Applications in Biology and Paleontology. Springer, Berlin.
  • Simpson, A.G., Hughes, N.C., Kopaska-Merkel, D.C., and Ludvigsen, R. 2005. Development of the caudal exoskeleton of the pliomerid trilobite Hintzeia plicamarginis new species. Evolution & Development, 7:528-541.
  • Smith, L.H. 1998. Asymmetry of Early Paleozoic trilobites. Lethaia, 31:99-112.
  • Smith, L.H. 1998. Species level phenotypic variation in lower Paleozoic trilobites. Paleobiology, 24:17-36.
  • Smith, L.H. and Lieberman, B.S. 1999. Disparity and constraint in olenelloid trilobites and the Cambrian radiation. Paleobiology, 25:459-470.
  • Webber, A.J. and Hunda, B.R. 2007. Quantitatively comparing morphological trends to environment in the fossil record (Cincinnatian Series, Upper Ordovician). Evolution, 61:1455-1465.
  • Webster, M. 2015. Ontogeny and intraspecific variation of the early Cambrian trilobite Olenellus gilberti, with implications for olenelline phylogeny and macroevolutionary trends in phenotypic canalization. Journal of Systematic Palaeontology, 13:1-74.
  • Webster, M. and Hughes, N.C. 1999. Compactionrelated deformation in Cambrian olenelloid trilobites and its implications for fossil morphometry. Journal of Paleontology, 73:355-371.
  • Webster, M. and Zelditch, M.L. 2005. Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology, 31:354-372.
  • Webster, M. and Zelditch, M.L. 2011. Evolutionary lability of integration in Cambrian ptychoparioid trilobites. Evolutionary Biology, 38:144-162.
  • Webster, M. and Zelditch, M.L. 2011. Modularity of a Cambrian ptychoparioid trilobite cranidium. Evolution and Development, 13:96-109.