Published February 13, 2024 | Version v1
Journal article Restricted

Thermal Traits of Anurans Database for the Southeastern United States (TRAD): A Database of Thermal Trait Values for 40 Anuran Species

Description

DuBose, Traci P., Catalan, Victorjose, Moore, Chloe E., Farallo, Vincent R., Benson, Abigail L., Dade, Jessica L., Hopkins, William A., Mims, Meryl C. (2024): Thermal Traits of Anurans Database for the Southeastern United States (TRAD): A Database of Thermal Trait Values for 40 Anuran Species. Ichthyology & Herpetology 112 (1): 21-30, DOI: 10.1643/h2022102, URL: http://dx.doi.org/10.1643/h2022102

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:0E52FFE7475FFFFC83774742FFEA0D5E

References

  • Anderson, R. C. O., and D. V. Andrade. 2017. Trading heat and hops for water: dehydration effects on locomotor performance, thermal limits, and thermoregulatory behavior of a terrestrial toad. Ecology and Evolution 7:9066-9075.
  • Anderson, S. R., and J. J. Wiens. 2017. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71:1944-1959.
  • Angilletta, M. J., P. H. Niewiarowski, and C. A. Navas. 2002. The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27:249-268.
  • Bartelt, P. E., P. E. Thornton, and R. W. Klaver. 2022. Modelling physiological costs to assess impacts of climate change on amphibians in Yellowstone National Park, U.S. A. Ecological Indicators 135:108575.
  • Bennett, J. M., P. Calosi, S. Clusella-Trullas, B. Martinez, J. Sunday, A. C. Algar, M. B. Araujo, B. A. Hawkins, S. Keith, I. K uhn € , C. Rahbek, L. Rodriguez, A. Singer, F. Villalobos . . . I. Morales-Castilla. 2018. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data 5:180022.
  • Bennett, J. M., J. Sunday, P. Calosi, F. Villalobos, B. Martinez, R. Molina-Venegas, M. B. Araujo, A. C. Algar, S. Clusella-Trullas, B. A. Hawkins, S. A. Keith, I. K uhn € , C. Rahbek, L. Rodriguez . . . M. A. Olalla-Tarraga. 2021. The evolution of critical thermal limits of life on Earth. Nature Communications 12:1198.
  • Bovo, R. P., C. A. Navas, M. Tejedo, S. E. S. Valenca, and S. F. Gouveia. 2018. Ecophysiology of amphibians: information for best mechanistic models. Diversity 10:118.
  • Briscoe, N. J., S. D. Morris, P. D. Mathewson, L. B. Buckley, M. Jusup, O. Levy, I. M. D. Maclean, S. Pincebourde, E. A. Riddell, J. A. Roberts, R. Schouten, M. W. Sears, and M. R. Kearney. 2022. Mechanistic forecasts of species responses to climate change: the promise of biophysical ecology. Global Change Biology 29:1451-1470.
  • Bryan, J. 2021. googlesheets4: access google sheets using the sheets API V4. Version 1.0.0. https://CRAN.R-project. org/package¼googlesheets4
  • Buckley, L. B., A. F. Cannistra, and A. John. 2018. Leveraging organismal biology to forecast the effects of climate change. Integrative and Comparative Biology 58:38-51.
  • Cadena, C. D., K. H. Kozak, J. P. Gomez, J. L. Parra, C. M. McCain, R. C. K. Bowie, A. C. Carnaval, C. Moritz, C. Rahbek, T. E. Roberts, N. J. Sanders, C. J. Schneider, J. VanDerWal, K. R. Zamudio, and C. H. Graham. 2012. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proceedings of the Royal Society B: Biological Sciences 279:194-201.
  • Cadotte, M., C. H. Albert, and S. C. Walker. 2013. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology Letters 16:1234-1244.
  • Camacho, A., and T. W. Rusch. 2017. Methods and pitfalls of measuring thermal preference and tolerance in lizards. Journal of Thermal Biology 68:63-72.
  • Chown, S. L., K. J. Gaston, and D. Robinson. 2004. Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Functional Ecology 18:159-167.
  • Cicchino, A. S., C. K. Ghalambor, and W. C. Funk. 2023. Linking critical thermal maximum to mortality from thermal stress in a cold-water frog. Biology Letters 19:20230106.
  • D'Agostino McGowan, L., and J. Bryan. 2020. googledrive: an interface to Google Drive. Version 2.0.0. https://CRAN. R-project.org/package¼googledrive
  • Diaz-Ricaurte, J. C., F. C. Serrano, E. C. Guevara-Molina, C. Araujo, and M. Martins. 2020. Does behavioral thermal tolerance predict distribution pattern and habitat use in two sympatric Neotropical frogs? PLoS ONE 15:e0239485.
  • Dinno, A. 2017. dunn.test: Dunn's test of multiple comparisons using rank sums. Version 1.3.5. https://CRAN.R-pro ject.org/package¼dunn.test
  • DuBose, T. P., V. Catalan, C. E. Moore, V. R. Farallo, A. L. Benson, J. L. Dade, W. A. Hopkins, and M. C. Mims. 2023. TRAD: thermal traits of anurans database for the Southeastern United States. U.S. Geological Survey data release. DOI: https://doi.org/10.5066/P9HZFHSR
  • DuBose, T. P., C. E. Moore, S. Silknetter, A. L. Benson, T. Alexander, G. O'Malley, and M. C. Mims. 2022a. Mismatch between conservation status and climate change sensitivity leaves some anurans in the United States unprotected. Biological Conservation 277:109866.
  • DuBose, T. P., C. E. Moore, S. Silknetter, A. L. Benson, T. Alexander, G. O'Malley, and M. C. Mims. 2022b. Rarity and climate sensitivity index and components of 90 species of frogs and toads native to the conterminous United States. U.S. Geological Survey data release. DOI: https://doi.org/10.5066/P9U56Z7W
  • Dunn, O. J. 1964. Multiple comparisons using rank sums. Technometrics 6:241-252.
  • Etard, A., S. Morrill, and T. Newbold. 2020. Global gaps in trait data for terrestrial vertebrates. Global Ecology and Biogeography 29:2143-2158.
  • Farley, S. S., A. Dawson, S. J. Goring, and J. W. Williams. 2018. Situating ecology as a big-data science: current advances, challenges, and solutions. BioScience 68:563-576.
  • Foden, W. B., S. H. M. Butchart, S. N. Stuart, J.-C. Vie, H. R. Akcakaya, A. Angulo, L. M. DeVantier, A. Gutsche, E. Turak, L. Cao, S. D. Donner, V. Katariya, R. Bernard, R. A. Holland . . . G. M. Mace. 2013. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8:e65427.
  • Foden, W. B., B. E. Young, H. R. Akcakaya, R. A. Garcia, A. A. Hoffmann, B. A. Stein, C. D. Thomas, C. J. Wheatley, D. Bickford, J. A. Carr, D. G. Hole, T. G. Martin, M. Pacifici, J. W. Pearce-Higgins . . . B. Huntley. 2019. Climate change vulnerability assessment of species. WIREs Climate Change 10:e551.
  • Freckleton, R. P. 2009. The seven deadly sins of comparative analysis. Journal of Evolutionary Biology 22:1367-1375.
  • Freed, A. N. 1980. An adaptive advantage of basking behavior in an anuran amphibian. Physiological Zoology 53:433-444.
  • Gallagher, R. V., D. S. Falster, B. S. Maitner, R. Salguero- Gomez, V. Vandvik, W. D. Pearse, F. D. Schneider, J. Kattge, J. H. Poelen, J. S. Madin, M. J. Ankenbrand, C. Penone, X. Feng, V. M. Adams . . . B. J. Enquist. 2020. Open science principles for accelerating trait-based science across the tree of life. Nature Ecology & Evolution 4:294-303.
  • Gamble, T., P. B. Berendzen, H. B. Shaffer, D. E. Starkey, and A. M. Simons. 2008. Species limits and phylogeography of North American cricket frogs (Acris: Hylidae). Molecular Phylogenetics and Evolution 48:112-125.
  • GBIF Secretariat. 2019. GBIF Backbone Taxonomy Checklist dataset.
  • GBIF.org. 2021a. GBIF Occurrence Download. DOI: https:// doi.org/10.15468/dl.urd7d5
  • GBIF.org. 2021b. GBIF Occurrence Download. DOI: https:// doi.org/10.15468/dl.bd4w8b
  • Gonzalez-Suarez, M., P. M. Lucas, and E. Revilla. 2012. Biases in comparative analyses of extinction risk: mind the gap. Journal of Animal Ecology 81:1211-1222.
  • Google Scholar. 2022. Google Scholar. https://scholar.goo gle.com (accessed 5 July 2022).
  • Grant, E. H. C., D. A. W. Miller, B. R. Schmidt, M. J. Adams, S. M. Amburgey, T. Chambert, S. S. Cruickshank, R. N. Fisher, D. M. Green, B. R. Hossack, P. T. J. Johnson, M. B. Joseph, T. A. G. Rittenhouse, M. E. Ryan . . . E. Muths. 2016. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Scientific Reports 6: 25625.
  • Green, T., E. Das, and D. M. Green. 2016. Springtime emergence of overwintering toads, Anaxyrus fowleri, in relation to environmental factors. Copeia 104:393-401.
  • Griffis-Kyle, K. L. 2016. Physiology and ecology to inform climate adaptation strategies for desert amphibians. Herpetological Conservation and Biology 11:563-582.
  • Griffis-Kyle, K. L., K. Mougey, M. Vanlandeghem, S. Swain, and J. C. Drake. 2018. Comparison of climate vulnerability among desert herpetofauna. Biological Conservation 225:164-175.
  • Herpetological Review. 2017. Herpetological Review issues from 1967 to 2017, all open access complete editions. https://ssarherps.org/publications/herpetological-review/
  • HerpMapper. 2019. HerpMapper-a global herp atlas and data hub. https://www.herpmapper.org (accessed 01 December 2019).
  • Hoffmann, E. P., K. L. Cavanough, and N. J. Mitchell. 2021. Low desiccation and thermal tolerance constrains a terrestrial amphibian to a rare and disappearing microclimate niche. Conservation Physiology 9:coab027.
  • Huey, R. B., M. R. Kearney, A. Krockenberger, J. A. M. Holtum, M. Jess, and S. E. Williams. 2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences 367:1665-1679.
  • Hutchison, V. H., and R. K. Dupre. 1992. Thermoregulation, p. 206-249. In: Environmental Physiology of the Amphibians. M. E. Feder and W. W. Burggren (eds.). University of Chicago Press, Chicago.
  • International Union for Conservation of Nature. 2017. The IUCN Red List of Threatened Species version 3. https:// www.iucnredlist.org (accessed 08 July 2020).
  • ITIS. 2021. Integrated Taxonomic Information System. https://www.itis.gov/ (accessed 01 December 2022).
  • Johnson, T. F., N. J. B. Isaac, A. Paviolo, and M. Gonzalez-Suarez. 2021. Handling missing values in trait data. Global Ecology and Biogeography 30:51-62.
  • Kearney, M. R., and W. P. Porter. 2020. NicheMapR-an R package for biophysical modelling: the ectotherm and dynamic energy budget models. Ecography 43:85-96.
  • Kearney, M. R., W. P. Porter, and R. B. Huey. 2021. Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods in Ecology and Evolution 12:458-467.
  • Lemmon, E. M., A. R. Lemmon, J. T. Collins, J. A. Lee-Yaw, and D. C. Cannatella. 2007. Phylogeny-based delimitation of species boundaries and contact zones in the trilling chorus frogs (Pseudacris). Molecular Phylogenetics and Evolution 44:1068-1082.
  • Lertzman-Lepofsky, G. F., A. M. Kissel, B. Sinervo, and W. J. Palen. 2020. Water loss and temperature interact to compound amphibian vulnerability to climate change. Global Change Biology 26:4868-4879.
  • Levy, O., T. Dayan, W. P. Porter, and N. Kronfeld-Schor. 2019. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecological Monographs 89:e01334.
  • Lutterschmidt, W. I., and V. H. Hutchison. 1997. The critical thermal maximum: history and critique. Canadian Journal of Zoology 75:1561-1574.
  • Martini, S., F. Larras, A. Boye, E. Faure, N. Aberle, P. Archambault, L. Bacouillard, B. E. Beisner, L. Bittner, E. Castella, M. Danger, O. Gauthier, L. Karp-Boss, F. Lombard . . . S.-D. Ayata. 2021. Functional trait-based approaches as a common framework for aquatic ecologists. Limnology and Oceanography 66:965-994.
  • McGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21:178-185.
  • McLeod, A. I. 2022. Kendall: Kendall rank correlation and Mann-Kendall trend test. Version 2.2.1. https://CRAN.Rproject.org/package¼Kendall
  • Mims, M. C., and J. D. Olden. 2013. Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshwater Biology 58:50-62.
  • Moore, C. E., J. S. Helmann, Y. Chen, S. M. St. Amour, M. A. Hallmark, L. E. Hughes, N. Wax, and M. C. Mims. 2021. Anuran traits of the United States (ATraiU): a database for anuran traits-based conservation, management, and research. Ecology 102:e03261.
  • Moreira, M. O., Y.-F. Qu, and J. J. Wiens. 2021. Large-scale evolution of body temperatures in land vertebrates. Evolution Letters 5:484-494.
  • Morley, S. A., L. S. Peck, J. M. Sunday, S. Heiser, and A. E. Bates. 2019. Physiological acclimation and persistence of ectothermic species under extreme heat events. Global Ecology and Biogeography 28:1018-1037.
  • Muths, E., and P. S. Corn. 1997. Basking by adult boreal toads (Bufo boreas boreas) during the breeding season. Journal of Herpetology 31:426-428.
  • Navas, C. A., F. R. Gomes, and E. A. D. Domenico. 2016. Physiological ecology and conservation of anuran amphibians, p. 155-188. In: Amphibian and Reptile Adaptations to the Environment: Interplay between Physiology and Behavior. D. V. de Andrade, C. R. Bevier, and J. E. de Carvalho (eds.). CRC Press, Boca Raton, Florida.
  • Navas, C. A., S. F. Gouveia, J. J. Solano-Iguaran, M. A. Vidal, and L. D. Bacigalupe. 2021. Amphibian responses in experimental thermal gradients: concepts and limits for inference. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 254:110576.
  • Noss, R. F., W. J. Platt, B. A. Sorrie, A. S. Weakley, D. B. Means, J. Costanza, and R. K. Peet. 2015. How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Diversity and Distributions 21:236-244.
  • Olalla-Tarraga, M. A., and M. A. Rodriguez. 2007. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann's rule, urodeles its converse. Global Ecology and Biogeography 16: 606-617.
  • Oliveira, B. F., V. A. Sao-Pedro, G. Santos-Barrera, C. Penone, and G. C. Costa. 2017. AmphiBIO, a global database for amphibian ecological traits. Science Data 4:170123.
  • Ortega-Chinchilla, J. E., L. C. Cabanzo-Olarte, R. Vaz, F. Lamadrid-Feris, C. R. Bevier, and C. A. Navas. 2022. Behavioral models of hydrothermal regulation in anurans: a field study in the Atlantic Forest, Brazil. Biotropica 55:329-338.
  • Ospina, O. E., L. Tieu, J. J. Apodaca, and E. M. Lemmon. 2020. Hidden diversity in the mountain chorus frog (Pseudacris brachyphona) and the diagnosis of a new species of chorus frog in the southeastern United States. Copeia 108:778-795.
  • Pacifici, M., W. B. Foden, P. Visconti, J. E. M. Watson, S. H. M. Butchart, K. M. Kovacs, B. R. Scheffers, D. G. Hole, T. G. Martin, H. R. Akcakaya, R. T. Corlett, B. Huntly, D. Bickford, J. A. Carr . . . C. Rondinini. 2015. Assessing species vulnerability to climate change. Nature Climate Change 5:215-224.
  • Penone, C., A. D. Davidson, K. T. Shoemaker, M. Di Marco, C. Rondinini, T. M. Brooks, B. E. Young, C. H. Graham, and G. C. Costa. 2014. Imputation of missing data in life-history trait datasets: Which approach performs the best? Methods in Ecology and Evolution 5:961-970.
  • Peterman, W. E., and M. Gade. 2017. The importance of assessing parameter sensitivity when using biophysical models: a case study using plethodontid salamanders. Population Ecology 59:275-286.
  • Pinder, A. W., K. B. Storey, and G. R. Ultsch. 1992. Estivation and hibernation, p. 250-274. In: Environmental Physiology of the Amphibians. University of Chicago Press, Chicago.
  • Pottier, P., H. Lin, R. R. Y. Oh, P. Pollo, A. N. Rivera- Villanueva, J. O. Valdebenito, Y. Yang, T. Amano, S. Burke, S. M. Drobniak, and S. Nakagawa. 2022. A comprehensive database of amphibian heat tolerance. Scientific Data 9:600.
  • Pracheil, B., R. McManamay, M. Bevelhimer, C. DeRolph, and G. C ada. 2016. A traits-based approach for prioritizing species for monitoring and surrogacy selection. Endangered Species Research 31:243-258.
  • Putnam, R. W., and A. F. Bennett. 1981. Thermal dependence of behavioural performance of anuran amphibians. Animal Behaviour 29:502-509.
  • R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Version 4.1.1. https://www.R-project.org/
  • Reid, A. J., A. K. Carlson, I. F. Creed, E. J. Eliason, P. A. Gell, P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Olden, S. J. Ormerod, J. P. Smol, W. W. Taylor, K. Tockner, J. C. Vermaire . . . S. J. Cooke. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94:849-873.
  • Rohatgi, A. 2021. WebPlotDigitizer. Version 4.5. https:// automeris.io/WebPlotDigitizer (accessed 05 July 2022).
  • Rome, L. C., E. D. Stevens, and H. B. John-Alder. 1992. The influence of temperature and thermal acclimation on physiological function, p. 183-205. In: Environmental Physiology of the Amphibians. M. E. Feder and W. W. Burggren (eds.). University of Chicago Press, Chicago.
  • Sheridan, J. A., N. M. Caruso, J. J. Apodaca, and L. J. Rissler. 2018. Shifts in frog size and phenology: testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming. Ecology and Evolution 8:1316-1327.
  • Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman, and R. W. Waller. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306:1783-1786.
  • Taylor, E. N., L. M. Diele-Viegas, E. J. Gangloff, J. M. Hall, B. Halpern, M. D. Massey, D. Rodder, N. Rollinson, S. Spears, B. Sun, and R. S. Telemeco. 2021. The thermal ecology and physiology of reptiles and amphibians: a user's guide. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 335:13-44.
  • Teske, P. R., J. Sandoval-Castillo, T. R. Golla, A. Emami- Khoyi, M. Tine, S. von der Heyden, and L. B. Beheregaray. 2019. Thermal selection as a driver of marine ecological speciation. Proceedings of the Royal Society B: Biological Sciences 286:20182023.
  • Tyler, E. H. M., P. J. Somerfield, E. V. Berghe, J. Bremner, E. Jackson, O. Langmead, M. L. D. Palomares, and T. J. Webb. 2012. Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology. Global Ecology and Biogeography 21:922-934.
  • U.S. Geological Survey. 2020. National Watershed Boundary Dataset (ver. USGS National Watershed Boundary Dataset in FileGDB 10.1 format (published 20200701). https://www. usgs.gov/core-science-systems/ngp/national-hydrography/ access-national-hydrography-products (accessed 14 July 2020).
  • Violle, C., B. Borgy, and P. Choler. 2015. Trait databases: misuses and precautions. Journal of Vegetation Science 26:826-827.
  • Web of Science. 2022. Web of Science Core Collection. May 26, 2022 release. https://webofscience.help.clarivate.com/ Content/wos-core-collection/wos-core-collection.htm (accessed 5 July 2022).
  • Webb, C. T., J. A. Hoeting, G. M. Ames, M. I. Pyne, and N. LeRoy Poff. 2010. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13:267-283.
  • Wells, K. D. 2010. The Ecology and Behavior of Amphibians. University of Chicago Press, Chicago.
  • Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Version 3.3.5. https://ggplot2.tidyverse.org
  • Williams, S. E., L. P. Shoo, J. L. Isaac, A. A. Hoffmann, and G. Langham. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6:e325.
  • Wong, M. K. L., R. H. Lee, C.-M. Leong, O. T. Lewis, and B. Guenard. 2022. Trait-mediated competition drives an ant invasion and alters functional diversity. Proceedings of the Royal Society B: Biological Sciences 289:20220504.