Boys' Function Computed by Gauss-Jacobi Quadrature
Description
Boys' Function F_m(z) that appears in the quantum mechanics of Gaussian Type
Orbitals is a special case of Kummer's confluent hypergeometric function.
We evaluate its integral representation of a product of a power and an
exponential function over the unit interval with the numerical Gauss-Jacobi
quadrature.
We provide a C function boysGaussJacobi(int m, double z) for real positive values
of the argument z which basically employs a table of the weights and abscissae
of the quadrature rule for integer quantum numbers m<= 129 copied from
https://vixra.org/abs/1709.0304
We provide a C function boysGaussJacobiC(int m, complex double z) for complex
values which uses a lookup table on a grid of reference values of z as detailed
in https://doi.org/10.1023/B:NUMA.0000040063.91709.58 .
[https://zenodo.org/records/3603249]
Files
boysGaussJacobi.zip
Files
(481.4 kB)
Name | Size | Download all |
---|---|---|
md5:5fc9f1edd9c397628883a7408418b95d
|
481.4 kB | Preview Download |
Additional details
Related works
- Is part of
- Preprint: http://vixra.org/abs/1709.0304 (URL)
Subjects
- Gaussian Orbital
- https://www.wikidata.org/wiki/Q3355209
- Confluent hypergeometric function
- https://www.wikidata.org/wiki/Q783948