Published August 16, 2017 | Version v1
Journal article Open

Antioxidant defenses in three vesper bats(Chiroptera: Vespertilionidae) during hibernation

Description

Antonova, Ekaterina, Ilyukha, Viktor, Sergina, Svetlana, Khizhkin, Evgeniy, Belkin, Vladimir, Yakimova, Alina, Morozov, Artem (2017): Antioxidant defenses in three vesper bats(Chiroptera: Vespertilionidae) during hibernation. Turkish Journal of Zoology 41 (1): 1005-1009, DOI: 10.3906/zoo-1702-53, URL: http://dx.doi.org/10.3906/zoo-1702-53

Files

source.pdf

Files (169.0 kB)

Name Size Download all
md5:2d83baaf47044131c86d401b1eb829a8
169.0 kB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF83FFAF47044131C86D401BFFB8FFA8

Related works

Has part
Figure: 10.5281/zenodo.13199082 (DOI)
Figure: 10.5281/zenodo.13199084 (DOI)

References

  • Anufriev AI, Revin YuV (2006). Bioenergetics of hibernating bats (Chiroptera, Vespertilionidae) in Yakutia. Plecotus et al. 9: 8-17.
  • Armstrong RB, Ianuzzo CD, Kunz TH (1977). Histochemical and biochemical properties of flight muscle fibers in the little brown bat, Myotis lucifugus. J Comp Physiol 119: 141-154.
  • Astaeva MD, Klichkhanov NK (2009). Oxidative modification of proteins and blood antioxidant activity of ground squirrels during induced awakening from hibernation. Biology Bulletin 36: 562-567.
  • Bears RF, Sizes IN (1952). A spectral method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195: 133-140.
  • Belkin VV, Panchenko DV, Tirronen KF, Yakimova AE, Fedorov FV (2015). Ecological status of bats (Chiroptera) in winter roosts in eastern Fennoscandia. Russian Journal of Ecology 46: 463- 469.
  • Boveris A (1977). Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 78: 67-82.
  • Cantu-Medellin N, Byrd B, Hohn A, Vazquez-Medina JP, Zenteno-Savin T (2011). Differential antioxidant protection in tissues from marine mammals with distinct diving capacities. Shallow/short vs. deep/long divers. J Comp Biochem Physiol 158: 438-443.
  • Carey HV, Andrews MT, Martin SL (2003). Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83: 1153-1181.
  • Conde-Perezprina JC, Luna-Lopez A, Gonzalez-Puertos VY, Zenteno-Savin T, Leon-Galvan MA, Konigsberg M (2012). DNA MMR systems, microsatellite instability and antioxidant activity variations in two species of wild bats: Myotis velifer and Desmodus rotundus, as possible factors associated with longevity. Age 34: 1473-1492.
  • Galano A, Alvarez-Idaboy JR (2011). Glutathione: mechanism and kinetics of its non-enzymatic defense action against free radicals. Rsc Advances 1: 1763-1771.
  • Hudson NJ, Franklin CE (2002). Maintaining muscle mass during extended disuse: aestivating frogs as a model species. J Exp Biol 205: 2297-2303.
  • James RS, Staples JF, Brown JC Tessier SN, Storey KB (2013). The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus. J Exp Biol 216: 2587-2594.
  • Jani A, Martin SL, Jain S, Keys D, Edelstein CL (2013). Renal adaptation during hibernation. Am J Physiol Renal Physiol 305: F1521-F1532.
  • Lilley TM, Stauffer J, Kanerva M, Eeva T (2014). Interspecific variation in redox status regulation and immune defence in five bat species: the role of ectoparasites. Oecologia 175: 811-23.
  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  • Lyman CP (1970). Thermoregulation and metabolism in bats. In: Wimsatt WA, editor. Biology of Bats. New York, NY, USA: Academic Press, pp. 301-330.
  • Misra HP, Fridovich I (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247: 3170-3175.
  • Ohta H, Okamoto I, Hanaya T, Arai S, Ohta T, Fukuda S. (2006). Enhanced antioxidant defense due to extracellular catalase activity in Syrian hamster during arousal from hibernation. Comp Biochem Physiol 143: 484-491.
  • Orr AL, Lohse LA, Drew KL, Hermes-Lima M (2009). Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel. Comp Biochem Physiol A Mol Integr Physiol 153: 213-221.
  • Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M (2013). Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47: 9-23.
  • Schober W, Grimmberger E (1997). The Bats of Europe and North America. Neptune, NJ, USA: T.F.H. Publications.
  • Sedlak J, Lindsay RH (1968). Estimation of total, protein-bound and non-protein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25: 192-205.
  • Sergina S, Antonova E, Ilyukha V, Lapinski S, Lis M, Niedbala P, Unzhakov A, Belkin V (2015). Biochemical adaptations to dive-derived hypoxia/reoxygenation in semiaquatic rodents. Comp Biochem Physiol B 190: 37-45.
  • Siivonen Y, Wermundsen T (2008). Characteristics of winter roots of bat species in southern Finland. Mammalia 72: 50-56.
  • Storey KB (2010). Out cold: biochemical regulation of mammalian hibernation - a mini-review. Gerontology 56: 220-230.
  • Toien O, Drew KL, Chao ML, Rice ME (2001). Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels. Am J Physiol Reg Integr Comp Physiol 281: 572-583.
  • Van Breukelen F, Martin SL (2015). The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals. Physiology 30: 273-281.
  • Wilhelm Filho D, Althoff SL, Dafre AL, Boveris A (2007).Antioxidant defenses, longevity and ecophysiology of South American bats. Comp Biochem Physiol 146: 214-220.
  • Yin Q, Ge H, Liao CC, Liu D, Zhang S, Pan Y (2016). Antioxidant Defenses in the Brains of Bats during Hibernation. PLoS One 11: 1-17.