There is a newer version of the record available.

Published August 2, 2024 | Version v08
Preprint Open

Is the Big Bang an artifact?

Description

Abstract.   The possibility of the Big Bang being an artifact is briefly investigated. This is because the distance, size and mass have to be re-appraised on a fundamentally different basis. In addition, the remotest visible celestial bodies happen also to be the most massive, while the majority of smaller bodies are not visible and are screened out of consideration. In that case, the redshift can be dominated by gravitational redshift, which does not provide a recessional velocity. The same objects can have an approaching velocity, the blueshift of which, however, is overwhelmed by the redshift of immense gravity of those largest visible bodies at ever increasing distances. The Hubble constant loses its purported meaning. Therefore, the expansion of the universe and the Big Bang theory can be an artifact.

Notes

REQUEST:  Prior to submitting this preprint to an appropriate journal, it would be helpful for it to appear on arXiv.  The author has no peers outside his professional field in electron microscopy, who can endorse it. A volunteer endorser is sought for this purpose. The title will be changed to "Is universe expansion an artifact?" with some textual improvements plus more information may be provided too.

Files

BIG_BANG_v08.pdf

Files (358.7 kB)

Name Size Download all
md5:9d8ceb2ed7c9e68a213cbba0d5254aa9
358.7 kB Preview Download

Additional details

References

  • Danilatos, Gerasimos (2024) Novel quantitative push gravity/field theory poised for verification doi:10.5281/ ZENODO.3596184. URL https://zenodo.org/doi/10.5281/zenodo.3596184.
  • Freedman, W.L. (2024) New JWST results the current tension in Ho signaling new physics. American Physical Society Meeting.
  • Labbe, Ivo, van Dokkum, Pieter, Nelson, Erica, Bezanson, Rachel, Suess, Katherine A., Leja, Joel, Brammer, Gabriel, Whitaker, Katherine, Mathews, Elijah, Stefanon, Mauro & Wang, Bingjie (2023) A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616(7956), 266-269. ISSN 1476-4687. doi:10.1038/s41586-023-05786-2.
  • Riess, Adam G., Anand, Gagandeep S., Yuan, Wenlong, Casertano, Stefano, Dolphin, Andrew, Macri, Lucas M., Breuval, Louise, Scolnic, Dan, Perrin, Marshall & Anderson, Richard I. (2024) JWST observations reject unrecognized crowding of Cepheid photometry as an explanation for the Hubble tension at 8sigma cofidence. The Astrophysical Journal Letters 962(1), L17. ISSN 2041-8213. doi: 10.3847/2041-8213/ad1ddd.
  • Giulietti, Marika, Gandol, Giovanni, Massardi, Marcella, Behiri, Meriem & Lapi, Andrea (2024) Observing dusty star-forming galaxies at the cosmic noon through gravitational lensing: Perspectives from newgeneration telescopes. Galaxies 12(2), 9. ISSN 2075-4434. doi:10.3390/galaxies12020009.
  • Gottumukkala, R, Barrufet, L, Oesch, P A, Weibel, A, Allen, N, Alcalde Pampliega, B, Nelson, E J, Williams, C C, Brammer, G, Fudamoto, Y, Gonzýlez, V, Heintz, K E, Illingworth, G, Magee, D, Naidu, R P, Shuntov, M, Stefanon, M, Toft, S, Valentino, F & Xiao, M (2024) Unveiling the hidden universe with jwst: the contribution of dust-obscured galaxies to the stellar mass function at z = 3-8. Monthly Notices of the Royal Astronomical Society 530(1), 966983. ISSN 1365-2966. doi:10.1093/mnras/stae754.
  • Kokorev, Vasily, Jin, Shuowen, Gomez-Guijarro, Carlos, Magdis, Georgios E., Valentino, Francesco, Lee, Minju M., Daddi, Emanuele, Liu, Daizhong, Sargent, Mark T., Trebitsch, Maxime & Weaver, John R. (2023) Dust giant: Extended and clumpy star-formation in a massive dusty galaxy at z = 1.38. Astronomy and Astrophysics 677, A172. ISSN 1432-0746. doi:10.1051/0004-6361/202346937.
  • Naidu, Rohan P., Oesch, Pascal A., Dokkum, Pieter van, Nelson, Erica J., Suess, Katherine A., Brammer, Gabriel, Whitaker, Katherine E., Illingworth, Garth, Bouwens, Rychard, Tacchella, Sandro, Matthee, Jorryt, Allen, Natalie, Bezanson, Rachel, Conroy, Charlie, Labbe, Ivo, Leja, Joel, Leonova, Ecaterina, Magee, Dan, Price, Sedona H., Setton, David J., Strait, Victoria, Stefanon, Mauro, Toft, Sune, Weaver, John R. & Weibel, Andrea (2022) Two remarkably luminous galaxy candidates at z =10-12 revealed by jwst. The Astrophysical Journal Letters 940(1), L14. ISSN 2041-8213. doi:10.3847/2041-8213/ac9b22.
  • Wikipedia contributors (2018a) Le sage's theory of gravitation Wikipedia, the free encyclopedia. URL https://en.wikipedia.org/w/index.php?title=Le_Sage%27s_theory_of_gravitation&oldid= 867302622. [Online; accessed 14-December-2018].
  • Wikipedia contributors (2018b) Nicolas fatio de duillier Wikipedia, the free encyclopedia. URL https:// en.wikipedia.org/w/index.php?title=Nicolas_Fatio_de_Duillier&oldid=859255512 . [Online; accessed 14-December-2018].
  • Wikipedia contributors (2024a) Alternatives to general relativity Wikipedia, the free encyclopedia. URL https://en.wikipedia.org/w/index.php?title=Alternatives_to_general_relativity& oldid=1205746044. [Online; accessed 7-May-2024].
  • Wikipedia contributors (2024b) Cosmic microwave background Wikipedia, the free encyclopedia. URL https://en.wikipedia.org/w/index.php?title=Cosmic_microwave_background&oldid= 1221641058. [Online; accessed 3-May-2024].
  • Afanasev, D. E. & Katanaev, M. O. (2024) Was there a big bang?
  • Denisov, V. I. & Logunov, A. A. (1982) The inertial mass defined in the general theory of relativity has no physical meaning 51, 421-426. ISSN 0040-5779. doi:10.1007/bf01036205.
  • Fedosin, Sergey (2015) The graviton field as the source of mass and gravitational force in the modernized Le Sage model. Physical Science International Journal 8, 1-18. ISSN 2348-0130. doi:10.9734/psij/2015/ 22197.
  • Postolak, Marcin (2024) Did the big bang and cosmic inflation really happen? (a tale of alternative cosmo- logical models).
  • Okun, R.F. (2006) The concept of mass in the einstein year. arXiv doi:10.1142/9789812772657_0001. URL https://arxiv.org/abs/hep-ph/0602037v1.
  • Lovyagin, Nikita, Raikov, Alexander, Yershov, Vladimir & Lovyagin, Yuri (2022) Cosmological model tests with jwst. Galaxies 10(6), 108. ISSN 2075-4434. doi:10.3390/galaxies10060108. URL http://dx.doi. org/10.3390/galaxies10060108.
  • Danilatos, Gerasimos (2023) Python codes for push gravity doi:10.5281/zenodo.7951860. URL https:// zenodo.org/doi/10.5281/zenodo.7951860.
  • Feyerabend, Paul (2010) Against Method. Verso Books. ISBN 1844674428. URL https://www.ebook.de/ de/product/9026002/paul_feyerabend_against_method.html.
  • Bialy, S. & Loeb, A. (2018) Could solar radiation pressure explain Oumuamua's peculiar acceleration? The Astrophysical Journal Letters 868:L1, 1?5. doi:https://doi.org/10.3847/2041-8213/aaeda8.
  • Touboul, Pierre, Métris, Gilles, Rodrigues, Manuel, André, Yves, Baghi, Quentin, Bergé, Joel, Boulanger, Damien, Bremer, Stefanie, Chhun, Ratana, Christophe, Bruno, Cipolla, Valerio, Damour, Thibault, Danto, Pascale, Dittus, Hansjoerg, Fayet, Pierre, Foulon, Bernard, Guidotti, Pierre-Yves, Hardy, Emilie, Huynh, Phuong-Anh, Lÿmmerzahl, Claus, Lebat, Vincent, Liorzou, Françoise, List, Meike, Panet, Isabelle, Pires, Sandrine, Pouilloux, Benjamin, Prieur, Pascal, Reynaud, Serge, Rievers, Benny, Robert, Alain, Selig, Hanns, Serron, Laura, Sumner, Timothy & Visser, Pieter (2019) Space test of the equivalence principle: first results of the MICROSCOPE mission 36(22), 225006. doi:10.1088/1361-6382/ab4707.