Published August 2, 2024 | Version v1.1
Model Open

IceBoost - a Gradient Boosted Tree global framework for glacier ice thickness retrieval

  • 1. ROR icon Ca' Foscari University of Venice
  • 2. ROR icon University of California, Irvine
  • 1. University of California Irvine
  • 2. Consiglio Nazionale delle Ricerche
  • 3. Københavns Universitet
  • 4. ROR icon Ca' Foscari University of Venice

Description

The repository contains:

  • IceBoost model ensemble (XGBoost  mudule: .json file, CatBoost module: .cbm file).
  • Training datasets (.csv), in 2 versions: RAW and spatially downscaled.
  • Comparisons between IceBoost and other two models, on 10 selected glaciers for each one of the 19 regions of the Randolph Glacier Inventory v.6 (.zip archive), alongside a .csv file listing the ids of the compared glaciers. 

In all comparisons:

IceBoost is actively developed on Github: iceboost repository.

Files

README_v2.txt

Files (3.3 GB)

Name Size Download all
md5:bec6a94493c22a157dfc21333ddc5586
11.4 MB Download
md5:bfbe1d8b6966d4aed3bda4dbb440b05c
3.0 kB Preview Download
md5:4feea9fa41f336657350a33371466d5f
115.6 MB Preview Download
md5:5201eb0531719ad51c4831fe493a2394
221.2 MB Preview Download
md5:2f270dc897251b1be1590980f285b95c
1.8 kB Preview Download
md5:2ef59e108f2c5337acae0bd5fcf2f882
2.7 GB Preview Download
md5:43400d7ee7b4ed118cbaeaa42962fb4f
228.1 MB Preview Download

Additional details

Funding

European Commission
SKYNET – Estimating the ice volume of Earth's glaciers via Artificial Intelligence and remote sensing 101066651

Software

Repository URL
https://github.com/nmaffe/iceboost
Programming language
Python
Development Status
Active