Energy, demand for computing power and the Green World
Description
The review looks at the main trends in global energy production and consumption over the last half century, based on P.L. Kapitza's 1975 analysis using a unified approach based on the Umov–Poynting vector. Such aspects of the problem as the impact of energy consumption on gross national product per capita, reasons for different approaches of countries to the transition to renewable energy sources, existing sources of energy, global distribution of its production and consumption, features and prospects of different energy technologies, as well as technologies to reduce energy consumption are touched upon. Thus, since 1975, the price of one kilowatt-hour of "solar" electricity has fallen by orders of magnitude and this technology has moved to the forefront, while fusion still remains the "energy of the future" and coal continues to hold its position in the market. Somewhat unexpectedly, electronics and telecommunications have become a major consumer of energy, urging a shift from von Neumann architecture to neuromorphic technology in computers and the development of femto and attowatt optoelectronics. And a totally unforeseen energy consumer has been cryptocurrency mining. On the other hand, the harvesting of dissipated energy in a variety of ways is seen as an environmentally friendly alternative to the use of batteries in low and ultra-low-power devices.
Files
MoEM_article_131698.pdf
Files
(4.7 MB)
Name | Size | Download all |
---|---|---|
md5:acaa5c4f423bfeafcf6c4679cec43178
|
4.6 MB | Preview Download |
md5:16f2632c91ad13379e1c4fc6dbce89ef
|
99.8 kB | Preview Download |
Additional details
References
- 1. Kapitza P.L. Energy and physics. Physics–Uspekhi. 1976; 19(2): 169–173. https://doi.org/10.1070/PU1976v019n02ABEH005135
- 2. What is renewable energy? https://www.un.org/en/climatechange/what-is-renewable-energy (accessed on 10.04.2024).
- 3. Palazzo Corner S., Siegert M., Ceppi P., Fox-Kemper B., Frölicher T.L., Gallego-Sala A., Haigh J., Hegerl G.C., Jones C.D., Knutti R., Koven Ch.D., MacDougall A.H., Meinshausen M., Nicholls Z., Sallée J.B., Sanderson B.M., Séférian R., Turetsky M., Williams R.G., Zaehle S., Rogelj J. The zero emissions commitment and climate stabilization. Frontiers in Science. 2023; 1: 1170744. https://doi.org/10.3389/fsci.2023.1170744
- 4. Fuel Properties Comparison. Alternative Fuels Data Center. https://afdc.energy.gov/fuels/properties (accessed on 10.04.2024).
- 5. Electric car battery weight explained. https://blog.evbox.com/ev-battery-weight (accessed on 10.04.2024).
- 6. Morante J.R. The role of materials research in the deployment of hydrogen. Inside E-MRS World. 2022; 1(2). https://www.dropbox.com/s/5299cuybpk6odct/Inside%20E-MRS%20World_V1N2_September2022.pdf?dl=0 (accessed on 10.04.2024).
- 7. Pérez L.A.G. Heat pump vs boiler comparison guide. 2024. https://www.boilerguide.co.uk/compare/types/boiler-vs-heat-pump (accessed on 10.04.2024).
- 8. Tollefson J. Is it too late to keep global warming below 1.5 °C? The challenge in 7 charts. November 21, 2023. https://www.nature.com/immersive/d41586-023-03601-6/index.html?utm_source=Live+Audience&utm_campaign=7d1b6828a6-briefing-dy-20231122&utm_medium=email&utm_term=0_b27a691814-7d1b6828a6-51854944 (accessed on 10.04.2024).
- 9. 68% of the world population projected to live in urban areas by 2050. May 16, 2018. UN Department of Economic and Social Affairs. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 10.04.2024).
- 10. G20 energy transitions ministers' meeting. Goa, India, July 22, 2023. Outcome document and chair's summary. http://www.g20.utoronto.ca/2023/230722-energy.html (accessed on 10.04.2024).
- 11. COP28 UAE. https://www.cop28.com/ (accessed on 10.04.2024).
- 12. Ritchie H. How have the world's energy sources changed over the last two centuries? December 1, 2021. Our World in Data. https://ourworldindata.org/global-energy-200-years (accessed on 10.04.2024).
- 13. Bryce E. How many calories can the brain burn by thinking? November 9, 2019. https://www.livescience.com/burn-calories-brain.html (accessed on 10.04.2024).
- 14. Baumann O. How much energy do we expend using our brains? April 27, 2023. https://bond.edu.au/news/how-much-energy-do-we-expend-using-our-brains (accessed on 10.04.2024).
- 15. Thompson N.C., Ge S., Manso G.F. The importance of (exponentially more) computing power. arXiv:2206.14007. https://arxiv.org/abs/2206.14007
- 16. Mehonic A., Kenyon A.J. Brain-inspired computing needs a master plan. Nature. 2022; 604: 255. https://doi.org/10.1038/s41586-021-04362-w
- 17. Amodei D., Hernandez D. AI and compute. May 16, 2018. OpenAI Blog. https://openai.com/blog/ai-and-compute/ (accessed on 10.04.2024).
- 18. Huestis S. Cryptocurrency's energy consumption problem. January 30, 2023. ARMI. https://rmi.org/cryptocurrencys-energy-consumption-problem/ (accessed on 10.04.2024)
- 19. Trends in electric light-duty vehicles. https://www.iea.org/reports/global-ev-outlook-2023/trends-in-electric-light-duty-vehicles (accessed on 10.04.2024).
- 20. de Vries A. Bitcoin's growing water footprint. Cell Reports Sustainability. 2024; 1(1): 100004. https://doi.org/10.1016/j.crsus.2023.100004
- 21. Suberg W. China controls 50% of bitcoin mining while US hits 14% – New survey. July 17, 2020. Cointelegraph. https://cointelegraph.com/news/china-controls-50-of-bitcoin-mining-while-us-hits-14-new-survey (accessed on 10.04.2024).
- 22. Huang R. After China's bitcoin mining ban, bitcoin is stronger than ever. October 31, 2023. Forbes. https://www.forbes.com/sites/digital-assets/2023/10/31/after-chinas-bitcoin-mining-ban-bitcoin-is-stronger-than-ever/?sh=2586cbca2399 (accessed on 10.04.2024).
- 23. What is the energy consumption of the internet? April 20, 2023. Thunder Said Energy. https://thundersaidenergy.com/2023/04/20/what-is-the-energy-consumption-of-the-internet/ (accessed on 10.04.2024).
- 24. Belady C.L. In the data center, power and cooling costs more than the it equipment it supports. January 2007. Electronics Cooling. https://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/ (accessed on 10.04.2024).
- 25. Heyman K. The uncertain future of in-memory compute. December 13, 2023. Semiconductor Engineering. https://semiengineering.com/the-uncertain-future-of-in-memory-compute/?cmid=99c53822-8131-4051-97ba-a5a0f8c0d417 (accessed on 10.04.2024).
- 26. Aschenbrenner L. Situational awareness. The decade ahead. June 2024. https://situational-awareness.ai/ (accessed on 06.06.2024).
- 27. Miller D.A.B. Attojoule optoelectronics for low-energy information processing and communications. Journal of Lightwave Technology. 2017; 35(3): 346–396. https://doi.org/10.1109/JLT.2017.2647779
- 28. Nuclear Energy Summit 2024. Belgium, Brussels, March 21, 2024. https://www.iaea.org/events/nuclear-energy-summit-2024 (accessed on 10.04.2024).
- 29. Lindley B., Roulstone T., Locatelli G., Rooney M. Can fusion energy be cost-competitive and commercially viable? An analysis of magnetically confined reactors. Energy Policy. 2023; 177: 113511. https://doi.org/10.1016/j.enpol.2023.113511
- 30. Liu X., Ting J., He Y., Mercy M., Fiagbenu A., Zheng J., Wang D., Frost J., Musavigharavi P., Esteves G., Kisslinger K., Anantharaman S.B., Stach E., Olsson III R.H., Jariwala D. Reconfigurable compute-in-memory on field-programmable ferroelectric diodes. Nano Letters. 2022; 22(18): 7690–7698. https://doi.org/10.1021/acs.nanolett.2c03169
- 31. Ellis G., Gelman S.E. A preliminary model of global subsurface natural hydrogen resource potential. Geological Society of America Abstracts with Programs. 2022; 54(5). https://doi.org/10.1130/abs/2022AM-380270
- 32. Li Z., Fang S., Sun H., Chung R.-J., Fang X., He J.-H. Solar hydrogen. Advanced Energy Materials. 2023; 13(8): 2203019. https://doi.org/10.1002/aenm.202203019
- 33. Crownhart C. Solar panels are a pain to recycle. These companies are trying to fix that. August 19, 2021. https://www.technologyreview.com/2021/08/19/1032215/solar-panels-recycling/ (accessed on 10.04.2024).
- 34. Cheung A. Get a grip, unleash, lock in: An energy transition to-do list for 2024. January 16, 2024. BoombergNEF. https://about.bnef.com/blog/get-a-grip-unleash-lock-in-an-energy-transition-to-do-list-for-2024/ (accessed on 10.04.2024).
- 35. Global glut turns solar panels into garden fencing option. April 2, 2024. Financial Times. https://www.ft.com/content/2ea6bf6d-04e9-453b-a35f-cd6431cfc7bf (accessed on 10.04.2024).
- 36. Solar PV. July 11, 2023. https://www.iea.org/energy-system/renewables/solar-pv (accessed on 10.04.2024).
- 37. Williams M. New satellite successfully beams power from space. June 5, 2023. Universe Today. https://www.universetoday.com/161759/new-satellite-successfully-beams-power-from-space/#google_vignette (accessed on 10.04.2024).
- 38. Osman A.I., Chen L., Yang M., Msigwa G., Farghali M., Fawzy S., Rooney D.W., Yap P-S. Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environmental Chemistry Letttrs. 2023; 21: 741–764. https://doi.org/10.1007/s10311-022-01532-8
- 39. Schneider N. New photovoltaic materials: going beyond silicon. February 16, 2022. Polytechnique Insights. https://www.polytechnique-insights.com/en/braincamps/industry/how-new-materials-are-transforming-industry/new-photovoltaic-materials-going-beyond-silicon/ (accessed on 10.04.2024)
- 40. Williams M. Scientists beam solar power from space to earth in world first. June 6, 2023. Science Alert. https://www.sciencealert.com/scientists-beam-solar-power-from-space-to-earth-in-world-first (accessed on 10.04.2024).
- 41. New study updates NASA on space-based solar power. January 11, 2024. National Aeronautics and Space Administration. https://www.nasa.gov/organizations/otps/space-based-solar-power-report/ (accessed on 10.04.2024)
- 42. Modha D.S., Akopyan F., Andreopoulos A., Appuswamy R., Arthur J.V., Cassidy A.S., Datta P., DeBole M.V., Esser S.K., Otero C.O., Sawada J., Taba B., Amir A., Bablani D., Carlson P.J, Flickner M.D., Gandhasri R., Garreau G.J., Ito M., Klamo J.L., Kusnitz J.A., McClatchey N.J., McKinstry J.L., Nakamura Yu., Nayak T.K., Risk W.P., Schleupen K., Shaw B., Sivagnaname J., Smith D.F., Terrizzano I., Ueda T. Neural inference at the frontier of energy, space, and time. Science. 2023; 382(6668): 329–335. https://doi.org/10.1126/science.adh1174
- 43. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., von Molnar S., Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: a spin-based electronics vision for the future. Science. 2001; 294(5546): 1488–1495. https://doi.org/10.1126/science.1065389
- 44. Christensen D.V., Dittmann R., Linares-Barranco B., Sebastian A., Le Gallo M., Redaelli A., Slesazeck S., Mikolajick T., Spiga S., Menzel S., Valov I., Milano G., Ricciardi C., Liang Sh.-J., Miao F., Lanza M., Quill T.J., Keene S.T., Salleo A., Grollier J., Marković D., Mizrahi A., Yao P., Yang J.J., Indiveri G., Strachan J.P., Datta S., Vianello E., Valentian A., Feldmann J., Li X., Pernice W.H.P., Bhaskaran H., Furber S., Neftci E., Scherr F., Maass W., Ramaswamy S., Tapson J., Panda P., Kim Y., Tanaka G., Thorpe S., Bartolozzi Ch., Cleland Th.A., Posch Ch., Liu Sh.Ch., Panuccio G., Mahmud M., Mazumder A.N., Hosseini M., Mohsenin T., Donati E., Tolu S., Galeazzi R., Christensen M.E., Holm S., Ielmini D., Pryds N. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering. 2022; 2: 022501. https://doi.org/10.1088/2634-4386/ac4a83
- 45. Roldan J.B., Maldonado D., Aguilera-Pedregosa C., Moreno E., Aguirre F., Romero-Zaliz R., García-Vico A.M., Shen Y., Lanza M. Spiking neural networks based on two-dimensional materials. npj 2D Materials and Applications. 2022; 6: 63. https://doi.org/10.1038/s41699-022-00341-5
- 46. Ledentsov N.N., Grundmann M., Heinrichsdorff F., Bimberg D., Ustinov V.M., Zhukov A.E., Maximov M.V., Alferov Z.I., Lott J.A. Quantum-dot heterostructure lasers. IEEE Journal of Selected Topics in Quantum Electronics. 2000; 6(3): 439. https://doi.org/10.1109/2944.865099
- 47. Krishnamourthy H.S. Power converters with edge intelligence: Toward greener, resilient, and sustainable energy systems. Tech Briefs. 2023; 47(11): 14. https://www.techbriefs.com/documents/issue-archive/9175-ntb-1123/file
- 48. U.S. National Science Foundation. Award Abstract # 2239966. CAREER: Enhancing the state of health and performance of electronics via in-situ monitoring and prediction (SHaPE-MaP) – Toward edge intelligence in power conversion. https://www.nsf.gov/awardsearch/showAward?AWD_ID=2239966&HistoricalAwards=false (accessed on 10.04.2024).
- 49. What are Power Electronic Devices? Solar Power Electronic Devices. 2020. https://www.energy.gov/eere/solar/solar-power-electronic-devices (accessed on 10.04.2024).
- 50. Agrivoltaics. https://en.wikipedia.org/wiki/Agrivoltaics (accessed on 10.04.2024).
- 51. Chatterjee A., Lobato C.N., Zhang H., Bergne A., Esposito V., Yun S., Insinga A.R., Christensen D.V.,. Imbaquingo C, Bjørk R. Ahmed H., Ahmad M., Ho Ch.Y., Madsen M., Chen J., Norby P., Chiabrera F.M., Gunkel F., Ouyang Z., Pryds N. Powering internet-of-things from ambient energy: a review. Journal of Physics: Energy. 2023; 5(2): 022001. https://doi.org/10.1088/2515-7655/acb5e6
- 52. Energy harvesting. Semiconductor Engineering. https://semiengineering.com/kc/knowledge_center/energy-harvesting/165 (accessed on 10.04.2024).
- 53. Koon J. Energy harvesting starting to gain traction. April 18, 2022. Semiconductor Engineering. https://semiengineering.com/energy-harvesting-starting-to-gain-traction/?cmid=424419b7-6c4a-46ab-bd26-c060ae4d86d4 (accessed on 10.04.2024).
- 54. Whalen S.A., Apblett C.A., Aselage T.L. Improving power density and efficiency of miniature radioisotopic thermoelectric generators. Journal of Power Sources. 2008; 180(1): 657–663. https://doi.org/10.1016/j.jpowsour.2008.01.080
- 55. Deng H., Xiao S., Yang A., Wu H., Tang J., Zhang X., Li Y. Advances in nanogenerators for electrical power system state sensing and monitoring. Nano Energy. 2023; 115: 108738. https://doi.org/10.1016/j.nanoen.2023.108738
- 56. Basset P., Beeby S.P., Bowen C., Chew Z.J., Delbani A., Dharmasena R.D.I.G., Dudem B., Fan F.R., Galayko D., Guo H., Hao J., Hou Y., Hu Ch., Jing Q., Jung H.Y., Karan S.K., Kar-Narayan S., Kim M., Kim S.-W., Kuang Y., Lee K.J., Li J., Li Zh., Long Y., Priya Sh., Pu X., Ruan T., Silva S.R.P., Wang H.S.; Wang K., Wang X., Wang Zh.L., Wu W., Xu W., Zhang H., Zhang Y., Zhu M. Roadmap on nanogenerators and piezotronics featured. APL Materials. 2022; 10(10): 109201. https://doi.org/10.1063/5.0085850
- 57. Kumar A., Ansari M.N.M., Ibrahim S.M., Thomas P., Vaish R. Functionally graded piezoelectric energy harvester: A numerical study. Electronics. 2022; 11(16): 2595. https://doi.org/10.3390/electronics11162595
- 58. Bai Y. Exploring challenges and potential for a commercially viable piezoelectric energy harvesting system – Can Energy-as-Data concept thrive? Applied Physics Letters. 2024; 124(1): 110502. https://doi.org/10.1063/5.0193134
- 59. Ibrahim H.H., Singh M.J., Al-Bawri S.S., Ibrahim S.K., Islam M.T., Alzamil A., Islam M.S. Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications. Sensors (Basel). 2022; 22(11): 4144. https://doi.org/10.3390/s22114144
- 60. Worthman E. Micro-power energy harvesting. April 7, 2014. Semiconductor Engineering. https://semiengineering.com/micro-power-energy-harvesting/ (accessed on 10.04.2024).
- 61. Tohidi F., Holagh S.G., Chitsaz A. Thermoelectric generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering. 2022; 201(Pt A): 117793. https://doi.org/10.1016/j.applthermaleng.2021.117793
- 62. Korkmaz S., Kariper I.A. Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status. Nano Energy. 2021; 84: 105888. https://doi.org/10.1016/j.nanoen.2021.105888
- 63. Mondal R., Hasan M.A.M., Baik J.M., Yang Y. Advanced pyroelectric materials for energy harvesting and sensing applications. Materials Today. 2023; 66: 273–301. https://doi.org/10.1016/j.mattod.2023.03.023
- 64. Donelan J.M., Li Q., Naing V., Hoffer J.A., Weber D.J., Kuo A.D. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science. 2008; 319(5864): 807–810. https://doi.org/10.1126/science.1149860
- 65. Choi D., Lee Y., Lin Z-H., Cho S., Kim M., Ao C.K., Soh S., Sohn C., Jeong C.K., Lee J,. Lee M., Lee S., Ryu J., Parashar P., Cho Y., Ahn J., Kim I.-D., Jiang F., Lee P.S., Khandelwal G., Kim S.-J., Kim H.S., Song H.-Ch., Kim M., Nah J., Kim W., Menge H.G., Park Y.T., Xu W., Hao J., Park H., Lee J.-H., Lee D.-M., Kim S.-W., Park J.Y., Zhang H., Zi Y., Guo R., Cheng J., Yang Z., Xie Y., Lee S., Chung J., Oh I.-K., Kim J.-S., Cheng T., Gao Q., Cheng G., Gu G., Shim M., Jung J., Yun Ch., Zhang Ch., Liu G., Chen Y., Kim S., Chen X., Hu J., Pu X., Guo Z.H., Wang X., Chen J., Xiao X., Xie X., Jarin M., Zhang H., Lai Y.-Ch., He T., Kim H., Park I., Ahn J., Huynh N.D., Yang Y., Wang Zh.L., Baik J.M., Choi D. Recent advances in triboelectric nanogenerators: From technological progress to commercial applications. ACS Nano. 2023; 17(12): 11087–11219. https://doi.org/10.1021/acsnano.2c12458
- 66. Zhang R., Hummelgård M., Örtegren J., Andersson H., Olsen M., Chen D., Li J., Eivazi A., Dahlström C., Norgren M., Wang Z.L. Triboelectric nanogenerators with ultrahigh current density enhanced by hydrogen bonding between nylon and graphene oxide. Nano Energy. 2023; 115: 108737. https://doi.org/10.1016/j.nanoen.2023.108737
- 67. Shao Y., Luo B., Liu T., Cai C., Meng X., Wang S., Nie S. Harvesting energy from extreme environmental conditions with cellulosic triboelectric materials. Materials Today. 2023; 66: 348–370. https://doi.org/10.1016/j.mattod.2023.04.006
- 68. Bykov A.S., Malinkovich M.D., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Ksenich S.V., Zhukov R.N., Temirov A.A., Chichkov M.V., Polisan A.A., Parkhomenko Yu.N. Application of radioactive isotopes for beta-voltaic generators. Russian Microelectronics. 2017; 46: 527. https://doi.org/10.1134/S1063739717080054
- 69. Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Sobolev N.A., Kholkin A.L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3-based composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020; 67(6): 1219–1229. https://doi.org/10.1109/TUFFC.2020.2967842
- 70. Vidal J.V., Slabov V., Kholkin A.L., dos Santos M.P.S. Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: A review. Nano-Micro Letters. 2021; 13: 199. https://doi.org/10.1007/s40820-021-00713-4
- 71. Love C.J., Zhang S., Mershin A. Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil. PLoS ONE. 2008; 3(8): e2963. https://doi.org/10.1371/journal.pone.0002963
- 72. Stauffer N.W. Engine on a chip promises to best the battery. September 15, 2006. MIT Energy Initiative. https://energy.mit.edu/news/engine-on-a-chip-promises-to-best-the-battery/ (accessed on 10.04.2024).
- 73. Hambling D. Darpa's handheld nuclear fusion reactor. July 6, 2009. WIRED. https://www.wired.com/2009/07/darpas-handheld-nuclear-fusion-reactor/ (accessed on 10.04.2024).