Published July 23, 2024 | Version v1
Data paper Open

Actuation manifold from snapshots data

  • 1. ROR icon Carlos III University of Madrid
  • 2. ROR icon Harbin Institute of Technology

Description

OVERVIEW
This dataset accompanies the article titled "Actuation Manifold from Snapshots Data"
by Luigi Marra, Guy Y. Cornejo Maceda, Andrea Meilán-Vila, Vanesa Guerrero, Salma Rashwan,
Bernd R. Noack, Stefano Discetti, and Andrea Ianiro. The paper proposes a data-driven methodology to learn a low-dimensional actuation manifold
of controlled flows. The methodology starts by resolving snapshot flow data for a representative
ensemble of actuations. Key enablers for the actuation manifold are isometric mapping as an
encoder and a combination of a neural network and 𝑘-nearest neighbour interpolation as a decoder.
This methodology is tested for the fluidic pinball at Reynolds number Re = 30.
The proposed methodology yields a five-dimensional manifold that describes a wide range
of dynamics with a small representation error. The manifold is shown to be a key enabler for
control-oriented flow estimation. FILES The database consists of 9 distinct files: 1) Grid.h5 2) TrainingDataset_1.h5
3) TrainingDataset_2.h5
4) TrainingDataset_3.h5 5) TestDataset.h5 6) IsomapResults.h5
7) IsomapVarke.h5 8) Reconstruction_KNN1.h5 9) Reconstruction_KNN.h5
10) Reconstruction_MLP1.h5 11) Reconstruction_MLP2.h5 DATA DESCRIPTION 1) "Grid.h5" contains: - X_new: x-component of each point in the fluidic pinball DNS mesh - Y_new: y-component of each point in the fluidic pinball DNS mesh - dx: x-dimension of the DNS grid step - dy: y-dimension of the DNS grid step - dA: DNS grid element area - Mask: Mask matrix of 0 and 1 to identify fluidic pinball cylinders ---------------------------------------------------------------------------------------------------------------- 2) "TrainingDataset_1.h5" contains: - b: Fluidic pinball actuation vector. b_1 (front), b_2 (top), b_3 (bottom).
Matrix of the actuations explored in the training dataset. - p: Kiki parameters. p_1 (Boat-tailing/base-bleeding), p_2 (Magnus), p_3 (forward stagnation point).
Matrix of the Kiki parameters explored in the training dataset. - Cd: Drag coefficient vector - Cl: Lift coefficient vector - Cl_delayed: Vector of the time-delayed lift coefficient - dCl_dt: Vector of the time derivative of the lift coefficient - u7_125: Velocity measured at position (7,1.25), u-component - v7_125: Velocity measured at position (7,1.25), v-component - u10_125: Velocity measured at position (10,1.25), u-component - v10_125: Velocity measured at position (10,1.25), v-component ---------------------------------------------------------------------------------------------------------------- 3) "TrainingDataset_2.h5" contains: - Snap_u: Matrix with snapshots of u-component compiled column-wise ---------------------------------------------------------------------------------------------------------------- 4) "TrainingDataset_3.h5" contains: - Snap_v: Matrix with snapshots of v-component compiled column-wise ---------------------------------------------------------------------------------------------------------------- 5) "TestDataset.h5" contains: The same variables as "TrainingDataset_1.h5", "TrainingDataset_2.h5", "TrainingDataset_3.h5" but for the test dataset. ---------------------------------------------------------------------------------------------------------------- 6) "IsomapResults.h5" contains: - k_e: Number of neighbours used to construct the KNN-graph - D: Matrix with Euclidean distances between snapshots - Dg: Matrix with Geodesic distances between snapshots - Gamma: Matrix with low-dimensional embedding - Rv: Residual variance - Phi_u: Matrix with pseudomodes in column, u-component - Phi_v: Matrix with pseudomodes in column, v-component ---------------------------------------------------------------------------------------------------------------- 7) "IsomapVarke.h5" contains: - Ke: Vector of k_e instances analyzed in the encoding step - FrobNormDg: Frobenius norm of the geodesic distance matrix as k_e varies - NpointsConn: Number of points included in the KNN-graph as k_e varies ---------------------------------------------------------------------------------------------------------------- 8) "Reconstruction_KNN1.h5" contains: Sensor information: lift coefficient and its one-quarter mean shedding period delay - kd1: Number of neighbours used in the first step of KNN snapshots reconstruction
(Sensors+actuation->Manifold coordinates) - kd2: Number of neighbours used in the second step of KNN snapshots reconstruction
(Manifold coordinates->Snapshot) - Snap_u_hat: Matrix with reconstructed snapshots, u-component - Snap_v_hat: Matrix with reconstructed snapshots, v-component ---------------------------------------------------------------------------------------------------------------- 9) "Reconstruction_KNN2.h5" contains: Sensor information: v-component of the velocity at points (7,1.25) and (10,1.25) Same variables as "Reconstruction_KNN1.h5" but for reconstruction done with sensor information
the v-component of the velocity at points (7,1.25) and (10,1.25). ---------------------------------------------------------------------------------------------------------------- 10) "Reconstruction_MLP1.h5" contains: Sensor information: lift coefficient and its one-quarter mean shedding period delay - kd: Number of neighbours used in the second step of snapshots reconstruction.
MLP (Sensors+actuation->Manifold coordinates) and KNN interpolation (Manifold coordinates->snapshots) - Snap_u_hat: Matrix with reconstructed snapshots, u-component - Snap_v_hat: Matrix with reconstructed snapshots, v-component ---------------------------------------------------------------------------------------------------------------- 11) "Reconstruction_MLP2.h5" contains: Sensor information: v-component of the velocity at points (7,1.25) and (10,1.25) Same variables as "Reconstruction_MLP1.h5" but for reconstruction done with sensor information
the v-component of the velocity at points (7,1.25) and (10,1.25). ---------------------------------------------------------------------------------------------------------------- CONTACT INFORMATION For more information, please use the following email address: luigi.marra@uc3m.es ADDITIONAL RESOURCES Link to the code repository: https://github.com/Lmarra1/Actuation-manifold-from-snapshot-data.git ISSUES AND FEEDBACK If you encounter any issues or have feedback regarding this dataset, we encourage you to write to the authors.
Your insights and suggestions are valuable, and we appreciate your contribution to improving the quality of this dataset.



Files

Files (19.0 GB)

Name Size Download all
md5:fa2274e5cde9f43e7a97d126613fe884
3.0 MB Download
md5:e2e3535cbb54c4614f246ce7c42915e0
773.6 MB Download
md5:3786ad94f80db8f60f3efc00aa11542a
5.4 kB Download
md5:fdafb82e271971d3aea9a82895493222
884.0 MB Download
md5:751899059b716dfb46197f69c0a165be
884.0 MB Download
md5:953cc2e631e6af324f8211050642a8ba
884.0 MB Download
md5:659d8d6c4ca6572f681fd1f2e254ffd4
884.0 MB Download
md5:924fbd5a0fbe73eef0e6db219b5b53a6
884.0 MB Download
md5:3b88ca020c9ca4b449d988de9ca18acb
773.6 kB Download
md5:869ce2067ef0088f6bb6f11c07b92c0e
6.9 GB Download
md5:22519633b6135238bee9eaf329a88662
6.9 GB Download