Published July 20, 2024 | Version 2024.7.0
Software Open

PlasmaPy

Creators

  • 1. Center for Astrophysics | Harvard & Smithsonian
  • 2. UCLA
  • 3. University of Rochester
  • 4. Los Alamos National Laboratory
  • 5. OpenRefactory Inc.
  • 6. University of York
  • 7. University of Massachusetts Amherst
  • 8. University of Michigan
  • 9. UiT The Arctic University of Norway
  • 10. University of Sheffield
  • 11. Vanderbilt University
  • 12. Yale University
  • 13. American University
  • 14. University of Hawaiʻi at Mānoa
  • 15. Columbia University
  • 16. CEA
  • 17. Princeton University
  • 18. Laboratoire de Physique des Plasmas
  • 19. University of Delaware
  • 20. IPPLM
  • 21. University of Stuttgart
  • 22. Aperio Software
  • 23. Chandigarh University
  • 24. University of Edinburgh
  • 25. MIT
  • 26. College of William & Mary
  • 27. Victoria University of Wellington
  • 28. Boston University
  • 29. PES University
  • 30. University of Hawaiʻi at Manoa
  • 31. Zap Energy
  • 32. Planetary Science Institute
  • 33. Michigan State University
  • 34. University of Washington
  • 35. Phoenix Security Labs
  • 36. Mullard Space Science Laboratory
  • 37. Centre Spatial de l'École Polytechnique
  • 38. Laboratory for Atmospheric and Space Physics

Description

PlasmaPy is an open source Python package for plasma research and education. PlasmaPy is intended to contain core functionality needed by plasma scientists across disciplines.  The plasmapy.particles subpackage contains object-oriented and functional interfaces to represent and access basic particle data. The plasmapy.formulary subpackage contains functionality to calculate common plasma parameters, including many functions from the NRL Plasma Formulary. The plasmapy.dispersion subpackage can be used to calculate the dispersion relationships of several plasma waves, as well as the plasma dispersion function and its derivative. The plasmapy.analysis and plasmapy.diagnostics subpackage contain functionality to analyze plasma data sets. These subpackage include functionality for Thomson scattering, synthetic charged particle radiography, Langmuir probe data analysis, and finding null points in 3D magnetic field data.

Notes (English)

Early development on PlasmaPy was partially supported by the U.S. Department of Energy through grant DE-SC0016363 that was funded through the NSF-DOE Partnership on Basic Plasma Science and Engineering; a Scholarly Studies grant awarded by the Smithsonian Institution; Google Summer of Code; and NASA Heliophysics Data Environment Enhancements (HDEE) grant 80NSSC20K0174.

Files

Files (13.4 MB)

Name Size Download all
md5:dd3dec482e726252c306493f0d7a5b4a
13.4 MB Download

Additional details

Funding

Collaborative Research: Frameworks: An open source software ecosystem for plasma physics 1931388
National Science Foundation
Collaborative Research: Frameworks: An open source software ecosystem for plasma physics 1931393
National Science Foundation
Collaborative Research: Frameworks: An open source software ecosystem for plasma physics 1931429
National Science Foundation
Collaborative Research: Frameworks: An open source software ecosystem for plasma physics 1931435
National Science Foundation

Dates

Created
2024-07-20

Software

Repository URL
https://github.com/PlasmaPy/PlasmaPy
Programming language
Python
Development Status
Active

References

  • H. Alfvén. Existence of Electromagnetic-Hydrodynamic Waves. Nature, 150(3805):405–406, 1942. doi:10.1038/150405d0
  • W. Baumjohann and R. A. Treumann. Basic Space Plasma Physics. Imperial College Press, 1997.
  • G. Bekefi. Radiation Processes in Plasmas. Wiley, 1966. ISBN 9780471063506
  • P. M. Bellan. Improved basis set for low frequency plasma waves. Journal of Geophysical Research: Space Physics, 2012. doi:10.1029/2012JA017856
  • D. S. Bernstein. Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of Your Software . Pragmatic Bookshelf, 1st edition, 2015. ISBN 9781680500790. URL: https://pragprog.com/titles/dblegacy/beyond-legacy-code
  • C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. CRC Press, 2004. doi:10.1201/9781315275048
  • D. Bohm. The Characteristics of Electrical Discharges in Magnetic Fields. McGraw-Hill, 1949
  • M. Bonitz. Quantum Kinetic Theory. Springer, 1998. doi:10.1007/978-3-319-24121-0
  • J. P. Boris. Relativistic plasma simulation—Optimization of a hybrid code. In J. P. Boris and R. A. Shanny, editors, Proceedings of Fourth Conference on Numerical Simulation of Plasmas, 3–67. Naval Research Laboratory, 1970. URL: https://apps.dtic.mil/sti/citations/ADA023511
  • S. I. Braginskii. Transport Processes in a Plasma. Reviews of Plasma Physics, 1:205, 1965
  • S. J. Buchsbaum. Resonance in a plasma with two ion species. The Physics of Fluids, 3(3):418–420, 1960
  • J. Callen. Draft Material For "Fundamentals of Plasma Physics" Book. Unpublished.
  • F. Chen. Introduction to Plasma Physics and Controlled Fusion. Springer, 3rd edition, 2016. doi:10.1007/978-3-319-22309-4
  • E. M. Epperlein and M. G. Haynes. Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation . Physics of Fluids, 29:1029, 1986. doi:10.1063/1.865901
  • B. D. Fried and S. D. Conte. The Plasma Dispersion Function: The Hilbert Transformation of the Gaussian. Academic Press, 1961. doi:10.1016/C2013-0-12176-9
  • D. H. Froula, S. H. Glenzer, N. C. Luhmann, and J. Sheffield. Plasma Scattering of Electromagnetic Radiation. Academic Press, 2nd edition, 2011. ISBN 978-0-12-374877-5. doi:10.1016/C2009-0-20048-1
  • W. Fundamenski and O. E. Garcia. Comparison of Coulomb Collision Rates in the Plasma Physics and Magnetically Confined Fusion Literature . Technical Report EFDA–JET–R(07)01, EDFA-JET, 2007. URL: https://scipub.euro-fusion.org/archives/jet-archive/comparison-of-coulomb-collision-rates-in-the-plasma-physics-and-magnetically-confined-fusion-literature
  • D. O. Gericke, M. S. Murillo, and M. Schlanges. Dense plasma temperature equilibration in the binary collision approximation. Physical Review E, 65(3):036418, 2002. doi:10.1103/PhysRevE.65.036418
  • A. Hasegawa and C. Uberoi. Alfven wave. DOE critical review series. U.S. Department of Energy Office of Scientific and Technical Information, 1982. doi:10.2172/5259641
  • A. Haynes and Clare Parnell. A trilinear method for finding null points in a three-dimensional vector space. Physics of Plasmas, 14:082107, 08 2007. doi:10.1063/1.2756751
  • P. Hellinger, L. Matteini, Š. Štverák, P. M. Trávníček, and E. Marsch. Heating and cooling of protons in the fast solar wind between 0.3 and 1 au: helios revisited. Journal of Geophysical Research: Space Physics, 2011. doi:10.1029/2011JA016674
  • A. Hirose, A. Ito, S. M. Mahajan, and S. Ohsaki. Relation between Hall-magnetohydrodynamics and the kinetic Alfvén wave. Physics Letters A, 330(6):474–480, 2004. doi:10.1016/j.physleta.2004.08.021
  • J. V. Hollweg. Kinetic Alfvén wave revisited. Journal of Geophysical Research, 1999. doi:10.1029/1998JA900132
  • J.-Y. Ji and E. D. Held. Closure and transport theory for high-collisionality electron-ion plasmas. Physics of Plasmas, 2013. doi:10.1063/1.4801022
  • V. Khorikov. Unit Testing Principles, Practices, and Patterns. Manning Press, 1st edition, 2020. URL: https://www.manning.com/books/unit-testing
  • R. L. Lysak and W. Lotko. On the kinetic dispersion relation for shear alfvén waves. Journal of Geophysical Research: Space Physics, 101(A3):5085–5094, 1996. doi:10.1029/95JA03712
  • B. A. Maruca, S. D. Bale, L. Sorriso-Valvo, J. C. Kasper, and M. L. Stevens. Collisional thermalization of hydrogen and helium in solar-wind plasma. Physical Review Letters, 2013. doi:10.1103/physrevlett.111.241101
  • G. J. Morales and J. E. Maggs. Structure of kinetic alfven waves with small transverse scale length. Physics of Plasmas, 4:4118–4125, 1997
  • R. Osherove. The Art of Unit Testing: With Examples in .NET. Manning Press, 2nd edition, 2013. ISBN 9781617290893. URL: https://www.manning.com/books/the-art-of-unit-testing-second-edition
  • E. R. Priest and T. Forbes. Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press, 2000. ISBN 978-0-521-03394-7
  • A. S. Richardson. NRL Plasma Formulary. Technical Report, Naval Research Laboratory, 2019. URL: https://www.nrl.navy.mil/News-Media/Publications/nrl-plasma-formulary
  • D. Schaeffer. Generation of Quasi-Perpendicular Collisionless Shocks by a Laser-Driven Magnetic Piston. PhD thesis, University of California, Los Angeles, dec 2014. URL: https://doi.org/10.5281/zenodo.3766933, doi:10.5281/zenodo.3766933
  • J. Sheffield, D. Froula, S. H. Glenzer, and N. C. Luhmann, Jr. Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques. Academic Press, 2nd edition, 2011. ISBN 978-0-12-374877-5
  • L. Spitzer. Physics of Fully Ionized Gases. Interscience, 2nd edition, 1962
  • L. Spitzer and R. Härm. Transport phenomena in a Completely Ionized Gas. Phys. Rev., 89:977–981, 1953. doi:10.1103/PhysRev.89.977
  • T. H. Stix. Waves in Plasmas. AIP-Press, 1992. URL: https://link.springer.com/book/9780883188590
  • T. E. Stringer. Low-frequency waves in an unbounded plasma. Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research, 5(2):89–107, 1963. doi:10.1088/0368-3281/5/2/304
  • P. Thompson, M.K. Dougherty, and D.J. Southwood. Wave behaviour near critical frequencies in cold bi-ion plasmas. Planetary and Space Science, 43(5):625–634, 1995. URL: https://www.sciencedirect.com/science/article/pii/003206339400197Y, doi:https://doi.org/10.1016/0032-0633(94)00197-Y
  • D. Verscharen, K. G. Klein, and B. A. Maruca. The multi-scale nature of the solar wind. Living Reviews in Solar Physics, dec 2019. doi:10.1007/s41116-019-0021-0
  • S. T. Vincena, W. A. Farmer, J. E. Maggs, and G. J. Morales. Investigation of an ion-ion hybrid alfvén wave resonator. Physics of Plasmas, 20(1):012111, 2013. URL: https://doi.org/10.1063/1.4775777, doi:10.1063/1.4775777
  • G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy, S. H. D. Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, and P. Wilson. Best practices for scientific computing. PLoS Biology, 12(1):e1001745, 2014. doi:10.1371/journal.pbio.1001745
  • G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and T. K. Teal. Good enough practices in scientific computing. PLOS Computational Biology, 13(6):e1005510, 2017. doi:10.1371/journal.pcbi.1005510
  • E. Johnson, B. A. Maruca, M. McManus, K. G. Klein, E. R. Lichko, J. Verniero, K. W. Paulson, H. DeWeese, I. Dieguez, R. A. Qudsi, J. Kasper, M. Stevens, B. L. Alterman, L. B. Wilson III, R. Livi, A. Rahmati, and D. Larson. Anterograde collisional analysis of solar wind ions. The Astrophysical Journal, 950(1):51, jun 2023. doi:10.3847/1538-4357/accc32.
  • S. Lundquist. Magneto-hydrostatic fields. Arkiv. fysik, 2(35):361, 1950.